Alex Telitsine
commited on
Commit
·
cc6b80f
1
Parent(s):
2c156c4
Resnet Test Quantization
Browse files- .DS_Store +0 -0
- Int8ANE.ipynb +403 -0
.DS_Store
ADDED
Binary file (10.2 kB). View file
|
|
Int8ANE.ipynb
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "69faf98f-4067-4974-a3cf-2b7aa709d65c",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"pip install coremltools==8.0b1 torch==2.3.0 torchvision torchaudio scikit-learn==1.1.2 "
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 38,
|
16 |
+
"id": "56b386de-6f8c-4814-9159-79aef921c810",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [
|
19 |
+
{
|
20 |
+
"name": "stderr",
|
21 |
+
"output_type": "stream",
|
22 |
+
"text": [
|
23 |
+
"Converting PyTorch Frontend ==> MIL Ops: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋| 440/441 [00:00<00:00, 6548.48 ops/s]\n",
|
24 |
+
"Running MIL frontend_pytorch pipeline: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 139.19 passes/s]\n",
|
25 |
+
"Running MIL default pipeline: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 79/79 [00:01<00:00, 57.60 passes/s]\n",
|
26 |
+
"Running MIL backend_mlprogram pipeline: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 233.95 passes/s]\n"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "stdout",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"OptimizationConfig LUT\n",
|
34 |
+
"<class 'coremltools.optimize.coreml._quantization_passes.palettize_weights'>\n"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "stderr",
|
39 |
+
"output_type": "stream",
|
40 |
+
"text": [
|
41 |
+
"Running compression pass palettize_weights: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 67/67 [00:00<00:00, 99.79 ops/s]\n",
|
42 |
+
"Running MIL frontend_milinternal pipeline: 0 passes [00:00, ? passes/s]\n",
|
43 |
+
"Running MIL default pipeline: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 77/77 [00:00<00:00, 176.72 passes/s]\n",
|
44 |
+
"Running MIL backend_mlprogram pipeline: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 180.92 passes/s]\n"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"name": "stdout",
|
49 |
+
"output_type": "stream",
|
50 |
+
"text": [
|
51 |
+
"OptimizationConfig LINEAR\n",
|
52 |
+
"-------- (W4) -------- \n",
|
53 |
+
"<class 'coremltools.optimize.coreml._quantization_passes.linear_quantize_weights'>\n"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"name": "stderr",
|
58 |
+
"output_type": "stream",
|
59 |
+
"text": [
|
60 |
+
"Running compression pass linear_quantize_weights: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 67/67 [00:00<00:00, 92.51 ops/s]\n",
|
61 |
+
"Running MIL frontend_milinternal pipeline: 0 passes [00:00, ? passes/s]\n",
|
62 |
+
"Running MIL default pipeline: 100%|██████████████████████████��█████████████████████████████████████████████████████████████████████████████████████████████████████| 77/77 [00:00<00:00, 167.87 passes/s]\n",
|
63 |
+
"Running MIL backend_mlprogram pipeline: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 209.76 passes/s]\n"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"name": "stdout",
|
68 |
+
"output_type": "stream",
|
69 |
+
"text": [
|
70 |
+
"-------- W8 selected! ---------- \n",
|
71 |
+
"-------- Activation A8 quant! ---------- \n",
|
72 |
+
"<class 'coremltools.optimize.coreml.experimental._quantization_passes.insert_prefix_quantize_dequantize_pair'>\n"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"name": "stderr",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"Running activation compression pass insert_prefix_quantize_dequantize_pair: 100%|██████████████████████████████████████████████████████████████████████████████████| 522/522 [00:00<00:00, 7993.67 ops/s]\n",
|
80 |
+
"Running compression pass linear_quantize_activations: start calibrating 10 samples\n",
|
81 |
+
"Running compression pass linear_quantize_activations: calibration may take a while ...\n",
|
82 |
+
"Running compression pass linear_quantize_activations: calibrating sample 1/10 succeeds.\n",
|
83 |
+
"Running compression pass linear_quantize_activations: calibrating sample 2/10 succeeds.\n",
|
84 |
+
"Running compression pass linear_quantize_activations: calibrating sample 3/10 succeeds.\n",
|
85 |
+
"Running compression pass linear_quantize_activations: calibrating sample 4/10 succeeds.\n",
|
86 |
+
"Running compression pass linear_quantize_activations: calibrating sample 5/10 succeeds.\n",
|
87 |
+
"Running compression pass linear_quantize_activations: calibrating sample 6/10 succeeds.\n",
|
88 |
+
"Running compression pass linear_quantize_activations: calibrating sample 7/10 succeeds.\n",
|
89 |
+
"Running compression pass linear_quantize_activations: calibrating sample 8/10 succeeds.\n",
|
90 |
+
"Running compression pass linear_quantize_activations: calibrating sample 9/10 succeeds.\n",
|
91 |
+
"Running compression pass linear_quantize_activations: calibrating sample 10/10 succeeds.\n",
|
92 |
+
"Running MIL frontend_milinternal pipeline: 0 passes [00:00, ? passes/s]\n",
|
93 |
+
"Running MIL default pipeline: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 77/77 [00:01<00:00, 56.74 passes/s]\n",
|
94 |
+
"Running MIL backend_mlprogram pipeline: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 76.64 passes/s]\n"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"name": "stdout",
|
99 |
+
"output_type": "stream",
|
100 |
+
"text": [
|
101 |
+
"OptimizationConfig LUT(LINEAR)\n",
|
102 |
+
"-------- LUT(W8) -------- \n",
|
103 |
+
"<class 'coremltools.optimize.coreml._quantization_passes.linear_quantize_weights'>\n"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"name": "stderr",
|
108 |
+
"output_type": "stream",
|
109 |
+
"text": [
|
110 |
+
"Running compression pass linear_quantize_weights: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 67/67 [00:00<00:00, 107.97 ops/s]\n",
|
111 |
+
"Running MIL frontend_milinternal pipeline: 0 passes [00:00, ? passes/s]\n",
|
112 |
+
"Running MIL default pipeline: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 77/77 [00:00<00:00, 176.48 passes/s]\n",
|
113 |
+
"Running MIL backend_mlprogram pipeline: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 215.97 passes/s]\n"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"name": "stdout",
|
118 |
+
"output_type": "stream",
|
119 |
+
"text": [
|
120 |
+
"<class 'coremltools.optimize.coreml._quantization_passes.palettize_weights'>\n"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"name": "stderr",
|
125 |
+
"output_type": "stream",
|
126 |
+
"text": [
|
127 |
+
"Running compression pass palettize_weights: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 121/121 [00:00<00:00, 116588.74 ops/s]\n",
|
128 |
+
"Running MIL frontend_milinternal pipeline: 0 passes [00:00, ? passes/s]\n",
|
129 |
+
"Running MIL default pipeline: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 77/77 [00:00<00:00, 180.58 passes/s]\n",
|
130 |
+
"Running MIL backend_mlprogram pipeline: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 198.24 passes/s]\n"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"name": "stdout",
|
135 |
+
"output_type": "stream",
|
136 |
+
"text": [
|
137 |
+
"-------- LUT4+W8 selected! ---------- \n",
|
138 |
+
"-------- Activation A8 quant! ---------- \n",
|
139 |
+
"<class 'coremltools.optimize.coreml.experimental._quantization_passes.insert_prefix_quantize_dequantize_pair'>\n"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"name": "stderr",
|
144 |
+
"output_type": "stream",
|
145 |
+
"text": [
|
146 |
+
"Running activation compression pass insert_prefix_quantize_dequantize_pair: 100%|██████████████████████████████████████████████████████████████████████████████████| 522/522 [00:00<00:00, 6895.20 ops/s]\n",
|
147 |
+
"Running compression pass linear_quantize_activations: start calibrating 10 samples\n",
|
148 |
+
"Running compression pass linear_quantize_activations: calibration may take a while ...\n",
|
149 |
+
"Running compression pass linear_quantize_activations: calibrating sample 1/10 succeeds.\n",
|
150 |
+
"Running compression pass linear_quantize_activations: calibrating sample 2/10 succeeds.\n",
|
151 |
+
"Running compression pass linear_quantize_activations: calibrating sample 3/10 succeeds.\n",
|
152 |
+
"Running compression pass linear_quantize_activations: calibrating sample 4/10 succeeds.\n",
|
153 |
+
"Running compression pass linear_quantize_activations: calibrating sample 5/10 succeeds.\n",
|
154 |
+
"Running compression pass linear_quantize_activations: calibrating sample 6/10 succeeds.\n",
|
155 |
+
"Running compression pass linear_quantize_activations: calibrating sample 7/10 succeeds.\n",
|
156 |
+
"Running compression pass linear_quantize_activations: calibrating sample 8/10 succeeds.\n",
|
157 |
+
"Running compression pass linear_quantize_activations: calibrating sample 9/10 succeeds.\n",
|
158 |
+
"Running compression pass linear_quantize_activations: calibrating sample 10/10 succeeds.\n",
|
159 |
+
"Running MIL frontend_milinternal pipeline: 0 passes [00:00, ? passes/s]\n",
|
160 |
+
"Running MIL default pipeline: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 77/77 [00:01<00:00, 70.87 passes/s]\n",
|
161 |
+
"Running MIL backend_mlprogram pipeline: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 116.62 passes/s]\n"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"name": "stdout",
|
166 |
+
"output_type": "stream",
|
167 |
+
"text": [
|
168 |
+
"rnfs-A8W8-LUT4-b1.mlpackage\n",
|
169 |
+
"Done!\n"
|
170 |
+
]
|
171 |
+
}
|
172 |
+
],
|
173 |
+
"source": [
|
174 |
+
"import torch\n",
|
175 |
+
"import torch.nn as nn\n",
|
176 |
+
"import torch.nn.functional as F\n",
|
177 |
+
"import torchvision.transforms as transforms\n",
|
178 |
+
"import coremltools as ct\n",
|
179 |
+
"import coremltools.optimize as cto\n",
|
180 |
+
"from PIL import Image\n",
|
181 |
+
"import numpy as np\n",
|
182 |
+
"import requests\n",
|
183 |
+
"import os\n",
|
184 |
+
"\n",
|
185 |
+
"\n",
|
186 |
+
"class BasicBlock(nn.Module):\n",
|
187 |
+
" expansion = 1\n",
|
188 |
+
"\n",
|
189 |
+
" def __init__(self, in_planes, planes, stride=1):\n",
|
190 |
+
" super(BasicBlock, self).__init__()\n",
|
191 |
+
" self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)\n",
|
192 |
+
" self.bn1 = nn.BatchNorm2d(planes)\n",
|
193 |
+
" self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)\n",
|
194 |
+
" self.bn2 = nn.BatchNorm2d(planes)\n",
|
195 |
+
"\n",
|
196 |
+
" self.shortcut = nn.Sequential()\n",
|
197 |
+
" if stride != 1 or in_planes != self.expansion*planes:\n",
|
198 |
+
" self.shortcut = nn.Sequential(\n",
|
199 |
+
" nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),\n",
|
200 |
+
" nn.BatchNorm2d(self.expansion*planes)\n",
|
201 |
+
" )\n",
|
202 |
+
"\n",
|
203 |
+
" def forward(self, x):\n",
|
204 |
+
" out = F.relu(self.bn1(self.conv1(x)))\n",
|
205 |
+
" out = self.bn2(self.conv2(out))\n",
|
206 |
+
" out += self.shortcut(x)\n",
|
207 |
+
" out = F.relu(out)\n",
|
208 |
+
" return out\n",
|
209 |
+
"\n",
|
210 |
+
"class Bottleneck(nn.Module):\n",
|
211 |
+
" expansion = 4\n",
|
212 |
+
"\n",
|
213 |
+
" def __init__(self, in_planes, planes, stride=1):\n",
|
214 |
+
" super(Bottleneck, self).__init__()\n",
|
215 |
+
" self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)\n",
|
216 |
+
" self.bn1 = nn.BatchNorm2d(planes)\n",
|
217 |
+
" self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)\n",
|
218 |
+
" self.bn2 = nn.BatchNorm2d(planes)\n",
|
219 |
+
" self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)\n",
|
220 |
+
" self.bn3 = nn.BatchNorm2d(self.expansion*planes)\n",
|
221 |
+
"\n",
|
222 |
+
" self.shortcut = nn.Sequential()\n",
|
223 |
+
" if stride != 1 or in_planes != self.expansion*planes:\n",
|
224 |
+
" self.shortcut = nn.Sequential(\n",
|
225 |
+
" nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),\n",
|
226 |
+
" nn.BatchNorm2d(self.expansion*planes)\n",
|
227 |
+
" )\n",
|
228 |
+
"\n",
|
229 |
+
" def forward(self, x):\n",
|
230 |
+
" out = F.relu(self.bn1(self.conv1(x)))\n",
|
231 |
+
" out = F.relu(self.bn2(self.conv2(out)))\n",
|
232 |
+
" out = self.bn3(self.conv3(out))\n",
|
233 |
+
" out += self.shortcut(x)\n",
|
234 |
+
" out = F.relu(out)\n",
|
235 |
+
" return out\n",
|
236 |
+
"\n",
|
237 |
+
"class ResNet(nn.Module):\n",
|
238 |
+
" def __init__(self, block, num_blocks, num_classes=1000):\n",
|
239 |
+
" super(ResNet, self).__init__()\n",
|
240 |
+
" self.in_planes = 64\n",
|
241 |
+
"\n",
|
242 |
+
" self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)\n",
|
243 |
+
" self.bn1 = nn.BatchNorm2d(64)\n",
|
244 |
+
" self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)\n",
|
245 |
+
" self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)\n",
|
246 |
+
" self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)\n",
|
247 |
+
" self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)\n",
|
248 |
+
" self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)\n",
|
249 |
+
" self.avgpool = nn.AdaptiveAvgPool2d((1, 1))\n",
|
250 |
+
" self.fc = nn.Linear(512*block.expansion, num_classes)\n",
|
251 |
+
"\n",
|
252 |
+
" def _make_layer(self, block, planes, num_blocks, stride):\n",
|
253 |
+
" strides = [stride] + [1]*(num_blocks-1)\n",
|
254 |
+
" layers = []\n",
|
255 |
+
" for stride in strides:\n",
|
256 |
+
" layers.append(block(self.in_planes, planes, stride))\n",
|
257 |
+
" self.in_planes = planes * block.expansion\n",
|
258 |
+
" return nn.Sequential(*layers)\n",
|
259 |
+
"\n",
|
260 |
+
" def forward(self, x):\n",
|
261 |
+
" x = F.relu(self.bn1(self.conv1(x)))\n",
|
262 |
+
" x = self.maxpool(x)\n",
|
263 |
+
" x = self.layer1(x)\n",
|
264 |
+
" x = self.layer2(x)\n",
|
265 |
+
" x = self.layer3(x)\n",
|
266 |
+
" x = self.layer4(x)\n",
|
267 |
+
" x = self.avgpool(x)\n",
|
268 |
+
" x = torch.flatten(x, 1)\n",
|
269 |
+
" x = self.fc(x)\n",
|
270 |
+
" return x\n",
|
271 |
+
"\n",
|
272 |
+
"def ResNet50():\n",
|
273 |
+
" return ResNet(Bottleneck, [3, 4, 6, 3])\n",
|
274 |
+
"\n",
|
275 |
+
"# Initialize the model\n",
|
276 |
+
"model = ResNet50()\n",
|
277 |
+
"model.eval() # Switch to inference mode\n",
|
278 |
+
"\n",
|
279 |
+
"# Custom batch size and image size\n",
|
280 |
+
"batch_size = 1\n",
|
281 |
+
"image_size = 224 #1024 #224 # You can change this value to any desired input size\n",
|
282 |
+
"\n",
|
283 |
+
"# Example input tensor with custom batch size and image size\n",
|
284 |
+
"input_tensor = torch.randn(batch_size, 3, image_size, image_size)\n",
|
285 |
+
"\n",
|
286 |
+
"# Perform forward pass and trace the model\n",
|
287 |
+
"traced_model = torch.jit.trace(model, input_tensor)\n",
|
288 |
+
"#print(output)\n",
|
289 |
+
"\n",
|
290 |
+
"# Exporting for iOS18\n",
|
291 |
+
"coreml_model_iOS18 = ct.convert(\n",
|
292 |
+
" traced_model,\n",
|
293 |
+
" inputs=[ct.TensorType(name=\"input\", shape=input_tensor.shape, dtype=np.float16)],\n",
|
294 |
+
" #classifier_config=ct.ClassifierConfig(class_labels=class_labels),\n",
|
295 |
+
" minimum_deployment_target=ct.target.iOS18\n",
|
296 |
+
")\n",
|
297 |
+
"a = f\"resnet-from-scratch-b{batch_size}.mlpackage\"\n",
|
298 |
+
"coreml_model_iOS18.save(a)\n",
|
299 |
+
"\n",
|
300 |
+
"# -------------------- quantization LUT only ----------------------------\n",
|
301 |
+
"print(\"OptimizationConfig LUT\")\n",
|
302 |
+
"\n",
|
303 |
+
"config = cto.coreml.OptimizationConfig(\n",
|
304 |
+
" global_config=cto.coreml.OpPalettizerConfig(mode=\"uniform\", nbits=4)\n",
|
305 |
+
")\n",
|
306 |
+
"compressed_model = cto.coreml.palettize_weights(coreml_model_iOS18, config)\n",
|
307 |
+
"a = f\"rnfs-4bit-b{batch_size}.mlpackage\"\n",
|
308 |
+
"compressed_model.save(a)\n",
|
309 |
+
"\n",
|
310 |
+
"\n",
|
311 |
+
"# -------------------- OptimizationConfig LINEAR ----------------------------\n",
|
312 |
+
"print(\"OptimizationConfig LINEAR\")\n",
|
313 |
+
"\n",
|
314 |
+
"dt = ct.converters.mil.mil.types.int4 \n",
|
315 |
+
"print(\"-------- (W4) -------- \")\n",
|
316 |
+
"\n",
|
317 |
+
"weight_config = cto.coreml.OptimizationConfig(\n",
|
318 |
+
" global_config=cto.coreml.OpLinearQuantizerConfig(\n",
|
319 |
+
" mode=\"linear_symmetric\", dtype=dt\n",
|
320 |
+
" )\n",
|
321 |
+
")\n",
|
322 |
+
"\n",
|
323 |
+
"compressed_model2 = cto.coreml.linear_quantize_weights(coreml_model_iOS18, weight_config) \n",
|
324 |
+
"print(\"-------- W8 selected! ---------- \")\n",
|
325 |
+
"\n",
|
326 |
+
"activation_config = cto.coreml.OptimizationConfig(\n",
|
327 |
+
" global_config=cto.coreml.experimental.OpActivationLinearQuantizerConfig(\n",
|
328 |
+
" mode=\"linear_symmetric\"\n",
|
329 |
+
" )\n",
|
330 |
+
")\n",
|
331 |
+
"print(\"-------- Activation A8 quant! ---------- \")\n",
|
332 |
+
"compressed_model_a8 = cto.coreml.experimental.linear_quantize_activations(\n",
|
333 |
+
" compressed_model2, \n",
|
334 |
+
" activation_config, [{\"input\": torch.randn_like(input_tensor)+i} for i in range(10)]\n",
|
335 |
+
")\n",
|
336 |
+
"a = f\"rnfs-A4W8-b{batch_size}.mlpackage\"\n",
|
337 |
+
"compressed_model_a8.save(a)\n",
|
338 |
+
"\n",
|
339 |
+
"\n",
|
340 |
+
"# -------------------- OptimizationConfig LUT(LINEAR)\" ----------------------------\n",
|
341 |
+
"print(\"OptimizationConfig LUT(LINEAR)\")\n",
|
342 |
+
"\n",
|
343 |
+
"dt = ct.converters.mil.mil.types.int8 # lut is 4 bit already\n",
|
344 |
+
"print(\"-------- LUT(W8) -------- \")\n",
|
345 |
+
"weight_config = cto.coreml.OptimizationConfig(\n",
|
346 |
+
" global_config=cto.coreml.OpLinearQuantizerConfig(\n",
|
347 |
+
" mode=\"linear_symmetric\", dtype=dt\n",
|
348 |
+
" )\n",
|
349 |
+
")\n",
|
350 |
+
"\n",
|
351 |
+
"compressed_model1 = cto.coreml.linear_quantize_weights(coreml_model_iOS18, weight_config) \n",
|
352 |
+
"compressed_model2 = cto.coreml.palettize_weights(compressed_model1, config, joint_compression=True)\n",
|
353 |
+
"print(\"-------- LUT4+W8 selected! ---------- \")\n",
|
354 |
+
"\n",
|
355 |
+
"activation_config = cto.coreml.OptimizationConfig(\n",
|
356 |
+
" global_config=cto.coreml.experimental.OpActivationLinearQuantizerConfig(\n",
|
357 |
+
" mode=\"linear_symmetric\"\n",
|
358 |
+
" )\n",
|
359 |
+
")\n",
|
360 |
+
"print(\"-------- Activation A8 quant! ---------- \")\n",
|
361 |
+
"compressed_model_a8 = cto.coreml.experimental.linear_quantize_activations(\n",
|
362 |
+
" compressed_model2, \n",
|
363 |
+
" activation_config, [{\"input\": torch.randn_like(input_tensor)+i} for i in range(10)]\n",
|
364 |
+
")\n",
|
365 |
+
"\n",
|
366 |
+
"a = f\"rnfs-A8W8-LUT4-b{batch_size}.mlpackage\"\n",
|
367 |
+
"compressed_model.save(a)\n",
|
368 |
+
"\n",
|
369 |
+
"print(a)\n",
|
370 |
+
"print(\"Done!\")\n"
|
371 |
+
]
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"cell_type": "code",
|
375 |
+
"execution_count": null,
|
376 |
+
"id": "6e7808a0-7228-4964-9fa7-6a703a34d6dc",
|
377 |
+
"metadata": {},
|
378 |
+
"outputs": [],
|
379 |
+
"source": []
|
380 |
+
}
|
381 |
+
],
|
382 |
+
"metadata": {
|
383 |
+
"kernelspec": {
|
384 |
+
"display_name": "Python 3 (ipykernel)",
|
385 |
+
"language": "python",
|
386 |
+
"name": "python3"
|
387 |
+
},
|
388 |
+
"language_info": {
|
389 |
+
"codemirror_mode": {
|
390 |
+
"name": "ipython",
|
391 |
+
"version": 3
|
392 |
+
},
|
393 |
+
"file_extension": ".py",
|
394 |
+
"mimetype": "text/x-python",
|
395 |
+
"name": "python",
|
396 |
+
"nbconvert_exporter": "python",
|
397 |
+
"pygments_lexer": "ipython3",
|
398 |
+
"version": "3.10.14"
|
399 |
+
}
|
400 |
+
},
|
401 |
+
"nbformat": 4,
|
402 |
+
"nbformat_minor": 5
|
403 |
+
}
|