File size: 8,781 Bytes
34b61ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch, os, glob, random, copy
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
from argparse import ArgumentParser
from time import time
from tqdm import tqdm
from omegaconf import OmegaConf
from dataset import RealESRGANDataset, RealESRGANDegrader
from model import Net
from ram.models.ram_lora import ram
from torchvision import transforms
from utils import add_lora_to_unet

dist.init_process_group(backend="nccl", init_method="env://")
rank = dist.get_rank()
world_size = dist.get_world_size()

parser = ArgumentParser()
parser.add_argument("--epoch", type=int, default=200)
parser.add_argument("--batch_size", type=int, default=12)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--model_dir", type=str, default="weight")
parser.add_argument("--log_dir", type=str, default="log")
parser.add_argument("--save_interval", type=int, default=10)

args = parser.parse_args()

# fixed seed for reproduction
seed = rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)

config = OmegaConf.load("config.yml")

epoch = args.epoch
learning_rate = args.learning_rate
bsz = args.batch_size

device = torch.device(f"cuda:{rank}" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True

if rank == 0:
    print("batch size per gpu =", bsz)

from diffusers import StableDiffusionPipeline
model_id = "stabilityai/stable-diffusion-2-1-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)

vae = pipe.vae
tokenizer = pipe.tokenizer
unet = pipe.unet
text_encoder = pipe.text_encoder

unet_D = copy.deepcopy(unet)
new_conv_in = torch.nn.Conv2d(256, 320, 3, padding=1).to(device)
new_conv_in.weight.data = unet_D.conv_in.weight.data.repeat(1, 64, 1, 1) / 64
new_conv_in.bias.data = unet_D.conv_in.bias.data
unet_D.conv_in = new_conv_in
unet_D = add_lora_to_unet(unet_D)
unet_D.set_adapters(["default_encoder", "default_decoder", "default_others"])

vae_teacher = copy.deepcopy(vae)
unet_teacher = copy.deepcopy(unet)

osediff = torch.load("./weight/pretrained/osediff.pkl", weights_only=False)
vae_teacher.load_state_dict(osediff["vae"])
unet_teacher.load_state_dict(osediff["unet"])

from diffusers.models.autoencoders.vae import Decoder 
ckpt_halfdecoder = torch.load("./weight/pretrained/halfDecoder.ckpt", weights_only=False)
decoder = Decoder(in_channels=4,
                  out_channels=3,
                  up_block_types=["UpDecoderBlock2D" for _ in range(4)],
                  block_out_channels=[64, 128, 256, 256],
                  layers_per_block=2,
                  norm_num_groups=32,
                  act_fn="silu",
                  norm_type="group",
                  mid_block_add_attention=True).to(device)
decoder_ckpt = {}
for k, v in ckpt_halfdecoder["state_dict"].items():
    if "decoder" in k:
        new_k = k.replace("decoder.", "")
        decoder_ckpt[new_k] = v
decoder.load_state_dict(decoder_ckpt, strict=True)

ram_transforms = transforms.Compose([
    transforms.Resize((384, 384)),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

DAPE = ram(pretrained="./weight/pretrained/ram_swin_large_14m.pth",
           pretrained_condition="./weight/pretrained/DAPE.pth",
           image_size=384,
           vit="swin_l").eval().to(device)

vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
vae_teacher.requires_grad_(False)
unet_teacher.requires_grad_(False)
decoder.requires_grad_(False)
DAPE.requires_grad_(False)

model = DDP(Net(unet, copy.deepcopy(decoder)).to(device), device_ids=[rank])
model_D = DDP(unet_D.to(device), device_ids=[rank])
model.requires_grad_(True)
model_D.requires_grad_(False)
params_to_opt = []
for n, p in model_D.named_parameters():
    if "lora" in n or "conv_in" in n:
        p.requires_grad = True
        params_to_opt.append(p)

if rank == 0:
    param_cnt = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print("#Param.", param_cnt/1e6, "M")

dataset = RealESRGANDataset(config, bsz)
degrader = RealESRGANDegrader(config, device)
dataloader = DataLoader(dataset, batch_size=bsz, num_workers=8)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
optimizer_D = torch.optim.Adam(params_to_opt, lr=1e-6)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100,], gamma=0.5)
scaler = torch.cuda.amp.GradScaler()

model_dir = "./%s" % (args.model_dir,)
log_path = "./%s/log.txt" % (args.log_dir,)
os.makedirs(model_dir, exist_ok=True)
os.makedirs(args.log_dir, exist_ok=True)

print("start training...")
timesteps = torch.tensor([999], device=device).long().expand(bsz,)
alpha = pipe.scheduler.alphas_cumprod[999]
for epoch_i in range(1, epoch + 1):
    start_time = time()
    loss_avg = 0.0
    loss_distil_avg = 0.0
    loss_adv_avg = 0.0
    loss_D_avg = 0.0
    iter_num = 0
    dist.barrier()
    for batch in tqdm(dataloader):
        with torch.cuda.amp.autocast(enabled=True):
            with torch.no_grad():
                LR, HR = degrader.degrade(batch)
                text_input = tokenizer(DAPE.generate_tag(ram_transforms(LR))[0],
                                       max_length=tokenizer.model_max_length,
                                       padding="max_length", return_tensors="pt").to(device)
                encoder_hidden_states = text_encoder(text_input.input_ids, return_dict=False)[0]
                LR, HR = LR * 2 - 1, HR * 2 - 1
                LR_ = F.interpolate(LR, scale_factor=4, mode="bicubic")
                LR_latents = vae_teacher.encode(LR_).latent_dist.mean * vae_teacher.config.scaling_factor
                HR_latents = vae.encode(HR).latent_dist.mean
                pred_teacher = unet_teacher(
                    LR_latents,
                    timesteps,
                    encoder_hidden_states=encoder_hidden_states,
                    return_dict=False,
                )[0]
                z0_teacher = (LR_latents-((1-alpha)**0.5)*pred_teacher)/(alpha**0.5)
                z0_teacher = vae_teacher.post_quant_conv(z0_teacher / vae_teacher.config.scaling_factor)
                z0_teacher = decoder.conv_in(z0_teacher)
                z0_teacher = decoder.mid_block(z0_teacher)
                z0_gt = vae.post_quant_conv(HR_latents)
                z0_gt = decoder.conv_in(z0_gt)
                z0_gt = decoder.mid_block(z0_gt)
            z0_student = model(LR)
            loss_distil = (z0_student - z0_teacher).abs().mean()
            loss_adv = F.softplus(-model_D(
                z0_student,
                timesteps,
                encoder_hidden_states=encoder_hidden_states,
                return_dict=False,
            )[0]).mean()
            loss = loss_distil + loss_adv
        optimizer.zero_grad(set_to_none=True)
        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()
        with torch.cuda.amp.autocast(enabled=True):
            pred_real = model_D(
                z0_gt.detach(),
                timesteps,
                encoder_hidden_states=encoder_hidden_states,
                return_dict=False,
            )[0]
            pred_fake = model_D(
                z0_student.detach(),
                timesteps,
                encoder_hidden_states=encoder_hidden_states,
                return_dict=False,
            )[0]
            loss_D = F.softplus(pred_fake).mean() + F.softplus(-pred_real).mean()
        optimizer_D.zero_grad(set_to_none=True)
        scaler.scale(loss_D).backward()
        scaler.step(optimizer_D)
        scaler.update()
        loss_avg += loss.item()
        loss_distil_avg += loss_distil.item()
        loss_adv_avg += loss_adv.item()
        loss_D_avg += loss_D.item()
        iter_num += 1
        # print("loss", loss.item())
        # print("loss_distil", loss_distil.item())
        # print("loss_adv", loss_adv.item())
        # print("loss_D", loss_D.item())
    scheduler.step()
    loss_avg /= iter_num
    loss_distil_avg /= iter_num
    loss_adv_avg /= iter_num
    loss_D_avg /= iter_num
    log_data = "[%d/%d] Average loss: %f, distil loss: %f, adv loss: %f, D loss: %f, time cost: %.2fs, cur lr is %f." % (epoch_i, epoch, loss_avg, loss_distil_avg, loss_adv_avg, loss_D_avg, time() - start_time, scheduler.get_last_lr()[0])
    if rank == 0:
        print(log_data)
        with open(log_path, "a") as log_file:
            log_file.write(log_data + "\n")
        if epoch_i % args.save_interval == 0:
            torch.save(model.state_dict(), "./%s/net_params_%d.pkl" % (model_dir, epoch_i))