File size: 8,781 Bytes
34b61ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import torch, os, glob, random, copy
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
from argparse import ArgumentParser
from time import time
from tqdm import tqdm
from omegaconf import OmegaConf
from dataset import RealESRGANDataset, RealESRGANDegrader
from model import Net
from ram.models.ram_lora import ram
from torchvision import transforms
from utils import add_lora_to_unet
dist.init_process_group(backend="nccl", init_method="env://")
rank = dist.get_rank()
world_size = dist.get_world_size()
parser = ArgumentParser()
parser.add_argument("--epoch", type=int, default=200)
parser.add_argument("--batch_size", type=int, default=12)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--model_dir", type=str, default="weight")
parser.add_argument("--log_dir", type=str, default="log")
parser.add_argument("--save_interval", type=int, default=10)
args = parser.parse_args()
# fixed seed for reproduction
seed = rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
config = OmegaConf.load("config.yml")
epoch = args.epoch
learning_rate = args.learning_rate
bsz = args.batch_size
device = torch.device(f"cuda:{rank}" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if rank == 0:
print("batch size per gpu =", bsz)
from diffusers import StableDiffusionPipeline
model_id = "stabilityai/stable-diffusion-2-1-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
vae = pipe.vae
tokenizer = pipe.tokenizer
unet = pipe.unet
text_encoder = pipe.text_encoder
unet_D = copy.deepcopy(unet)
new_conv_in = torch.nn.Conv2d(256, 320, 3, padding=1).to(device)
new_conv_in.weight.data = unet_D.conv_in.weight.data.repeat(1, 64, 1, 1) / 64
new_conv_in.bias.data = unet_D.conv_in.bias.data
unet_D.conv_in = new_conv_in
unet_D = add_lora_to_unet(unet_D)
unet_D.set_adapters(["default_encoder", "default_decoder", "default_others"])
vae_teacher = copy.deepcopy(vae)
unet_teacher = copy.deepcopy(unet)
osediff = torch.load("./weight/pretrained/osediff.pkl", weights_only=False)
vae_teacher.load_state_dict(osediff["vae"])
unet_teacher.load_state_dict(osediff["unet"])
from diffusers.models.autoencoders.vae import Decoder
ckpt_halfdecoder = torch.load("./weight/pretrained/halfDecoder.ckpt", weights_only=False)
decoder = Decoder(in_channels=4,
out_channels=3,
up_block_types=["UpDecoderBlock2D" for _ in range(4)],
block_out_channels=[64, 128, 256, 256],
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
norm_type="group",
mid_block_add_attention=True).to(device)
decoder_ckpt = {}
for k, v in ckpt_halfdecoder["state_dict"].items():
if "decoder" in k:
new_k = k.replace("decoder.", "")
decoder_ckpt[new_k] = v
decoder.load_state_dict(decoder_ckpt, strict=True)
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
DAPE = ram(pretrained="./weight/pretrained/ram_swin_large_14m.pth",
pretrained_condition="./weight/pretrained/DAPE.pth",
image_size=384,
vit="swin_l").eval().to(device)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
vae_teacher.requires_grad_(False)
unet_teacher.requires_grad_(False)
decoder.requires_grad_(False)
DAPE.requires_grad_(False)
model = DDP(Net(unet, copy.deepcopy(decoder)).to(device), device_ids=[rank])
model_D = DDP(unet_D.to(device), device_ids=[rank])
model.requires_grad_(True)
model_D.requires_grad_(False)
params_to_opt = []
for n, p in model_D.named_parameters():
if "lora" in n or "conv_in" in n:
p.requires_grad = True
params_to_opt.append(p)
if rank == 0:
param_cnt = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("#Param.", param_cnt/1e6, "M")
dataset = RealESRGANDataset(config, bsz)
degrader = RealESRGANDegrader(config, device)
dataloader = DataLoader(dataset, batch_size=bsz, num_workers=8)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
optimizer_D = torch.optim.Adam(params_to_opt, lr=1e-6)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100,], gamma=0.5)
scaler = torch.cuda.amp.GradScaler()
model_dir = "./%s" % (args.model_dir,)
log_path = "./%s/log.txt" % (args.log_dir,)
os.makedirs(model_dir, exist_ok=True)
os.makedirs(args.log_dir, exist_ok=True)
print("start training...")
timesteps = torch.tensor([999], device=device).long().expand(bsz,)
alpha = pipe.scheduler.alphas_cumprod[999]
for epoch_i in range(1, epoch + 1):
start_time = time()
loss_avg = 0.0
loss_distil_avg = 0.0
loss_adv_avg = 0.0
loss_D_avg = 0.0
iter_num = 0
dist.barrier()
for batch in tqdm(dataloader):
with torch.cuda.amp.autocast(enabled=True):
with torch.no_grad():
LR, HR = degrader.degrade(batch)
text_input = tokenizer(DAPE.generate_tag(ram_transforms(LR))[0],
max_length=tokenizer.model_max_length,
padding="max_length", return_tensors="pt").to(device)
encoder_hidden_states = text_encoder(text_input.input_ids, return_dict=False)[0]
LR, HR = LR * 2 - 1, HR * 2 - 1
LR_ = F.interpolate(LR, scale_factor=4, mode="bicubic")
LR_latents = vae_teacher.encode(LR_).latent_dist.mean * vae_teacher.config.scaling_factor
HR_latents = vae.encode(HR).latent_dist.mean
pred_teacher = unet_teacher(
LR_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)[0]
z0_teacher = (LR_latents-((1-alpha)**0.5)*pred_teacher)/(alpha**0.5)
z0_teacher = vae_teacher.post_quant_conv(z0_teacher / vae_teacher.config.scaling_factor)
z0_teacher = decoder.conv_in(z0_teacher)
z0_teacher = decoder.mid_block(z0_teacher)
z0_gt = vae.post_quant_conv(HR_latents)
z0_gt = decoder.conv_in(z0_gt)
z0_gt = decoder.mid_block(z0_gt)
z0_student = model(LR)
loss_distil = (z0_student - z0_teacher).abs().mean()
loss_adv = F.softplus(-model_D(
z0_student,
timesteps,
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)[0]).mean()
loss = loss_distil + loss_adv
optimizer.zero_grad(set_to_none=True)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
with torch.cuda.amp.autocast(enabled=True):
pred_real = model_D(
z0_gt.detach(),
timesteps,
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)[0]
pred_fake = model_D(
z0_student.detach(),
timesteps,
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)[0]
loss_D = F.softplus(pred_fake).mean() + F.softplus(-pred_real).mean()
optimizer_D.zero_grad(set_to_none=True)
scaler.scale(loss_D).backward()
scaler.step(optimizer_D)
scaler.update()
loss_avg += loss.item()
loss_distil_avg += loss_distil.item()
loss_adv_avg += loss_adv.item()
loss_D_avg += loss_D.item()
iter_num += 1
# print("loss", loss.item())
# print("loss_distil", loss_distil.item())
# print("loss_adv", loss_adv.item())
# print("loss_D", loss_D.item())
scheduler.step()
loss_avg /= iter_num
loss_distil_avg /= iter_num
loss_adv_avg /= iter_num
loss_D_avg /= iter_num
log_data = "[%d/%d] Average loss: %f, distil loss: %f, adv loss: %f, D loss: %f, time cost: %.2fs, cur lr is %f." % (epoch_i, epoch, loss_avg, loss_distil_avg, loss_adv_avg, loss_D_avg, time() - start_time, scheduler.get_last_lr()[0])
if rank == 0:
print(log_data)
with open(log_path, "a") as log_file:
log_file.write(log_data + "\n")
if epoch_i % args.save_interval == 0:
torch.save(model.state_dict(), "./%s/net_params_%d.pkl" % (model_dir, epoch_i))
|