--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-uncased-finetuned-ner-geocorpus results: [] --- # bert-base-multilingual-uncased-finetuned-ner-geocorpus This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1337 - Precision: 0.7867 - Recall: 0.8827 - F1: 0.8320 - Accuracy: 0.9727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 276 | 0.1785 | 0.6910 | 0.6597 | 0.6750 | 0.9527 | | 0.2507 | 2.0 | 552 | 0.1321 | 0.7761 | 0.7689 | 0.7725 | 0.9630 | | 0.2507 | 3.0 | 828 | 0.1158 | 0.7691 | 0.8165 | 0.7921 | 0.9669 | | 0.084 | 4.0 | 1104 | 0.1186 | 0.7503 | 0.8479 | 0.7961 | 0.9668 | | 0.084 | 5.0 | 1380 | 0.1287 | 0.7629 | 0.8560 | 0.8068 | 0.9657 | | 0.0443 | 6.0 | 1656 | 0.1295 | 0.7453 | 0.8769 | 0.8058 | 0.9666 | | 0.0443 | 7.0 | 1932 | 0.1423 | 0.7592 | 0.8862 | 0.8178 | 0.9685 | | 0.0243 | 8.0 | 2208 | 0.1267 | 0.7970 | 0.8664 | 0.8303 | 0.9724 | | 0.0243 | 9.0 | 2484 | 0.1309 | 0.7747 | 0.8746 | 0.8216 | 0.9710 | | 0.0164 | 10.0 | 2760 | 0.1337 | 0.7867 | 0.8827 | 0.8320 | 0.9727 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1