--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-uncased-finetuned-ner-geocorpus results: [] --- # bert-base-multilingual-uncased-finetuned-ner-geocorpus This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1210 - Precision: 0.8205 - Recall: 0.8757 - F1: 0.8472 - Accuracy: 0.9760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 276 | 0.1670 | 0.7138 | 0.6690 | 0.6906 | 0.9555 | | 0.247 | 2.0 | 552 | 0.1192 | 0.8109 | 0.7770 | 0.7936 | 0.9676 | | 0.247 | 3.0 | 828 | 0.1181 | 0.8226 | 0.8188 | 0.8207 | 0.9709 | | 0.0846 | 4.0 | 1104 | 0.1162 | 0.7656 | 0.8571 | 0.8088 | 0.9685 | | 0.0846 | 5.0 | 1380 | 0.1248 | 0.7627 | 0.8699 | 0.8128 | 0.9687 | | 0.0442 | 6.0 | 1656 | 0.0982 | 0.8233 | 0.8931 | 0.8568 | 0.9777 | | 0.0442 | 7.0 | 1932 | 0.1114 | 0.8100 | 0.8862 | 0.8464 | 0.9741 | | 0.0247 | 8.0 | 2208 | 0.1164 | 0.8342 | 0.8885 | 0.8605 | 0.9780 | | 0.0247 | 9.0 | 2484 | 0.1208 | 0.7983 | 0.8920 | 0.8426 | 0.9746 | | 0.0159 | 10.0 | 2760 | 0.1210 | 0.8205 | 0.8757 | 0.8472 | 0.9760 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1