File size: 6,769 Bytes
89cf463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import cv2
import time
import numpy as np
import numexpr as ne
from multiprocessing.dummy import Process, Queue
from options.hifi_test_options import HifiTestOptions
from HifiFaceAPI_parallel_base import Consumer0Base, Consumer2Base, Consumer1BaseONNX


def np_norm(x):
    return (x - np.average(x)) / np.std(x)


def reverse2wholeimage_hifi_trt_roi(swaped_img, mat_rev, img_mask, frame, roi_img, roi_box):
    target_image = cv2.warpAffine(swaped_img, mat_rev, roi_img.shape[:2][::-1], borderMode=cv2.BORDER_REPLICATE)[
                   ...,
                   ::-1]

    local_dict = {
        'img_mask': img_mask,
        'target_image': target_image,
        'roi_img': roi_img,
    }
    img = ne.evaluate('img_mask * (target_image * 255)+(1 - img_mask) * roi_img', local_dict=local_dict,
                      global_dict=None)
    img = img.astype(np.uint8)
    frame[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]] = img
    return frame


def get_max_face(np_rois):
    roi_areas = []
    for index in range(np_rois.shape[0]):
        roi_areas.append((np_rois[index, 2] - np_rois[index, 0]) * (np_rois[index, 3] - np_rois[index, 1]))
    return np.argmax(np.array(roi_areas))


class Consumer0(Consumer0Base):
    def __init__(self, opt, frame_queue_in, queue_list: list, block=True, fps_counter=False):
        super().__init__(opt, frame_queue_in, None, queue_list, block, fps_counter)

    def run(self):
        counter = 0
        start_time = time.time()
        kpss_old = None
        rois_old = faces_old = Ms_old = masks_old = None

        while True:
            frame = self.frame_queue_in.get()
            if frame is None:
                break
            try:
                _, bboxes, kpss = self.scrfd_detector.get_bboxes(frame, max_num=0)
                rois, faces, Ms, masks = self.face_alignment.forward(
                    frame, bboxes, kpss, limit=5, min_face_size=30,
                    crop_size=(self.crop_size, self.crop_size), apply_roi=True
                )

            except (TypeError, IndexError, ValueError) as e:
                self.queue_list[0].put([None, frame])
                continue

            if len(faces)==0:
                self.queue_list[0].put([None, frame])
                continue
            elif len(faces)==1:
                face = np.array(faces[0])
                mat = Ms[0]
                roi_box = rois[0]
            else:
                max_index = get_max_face(np.array(rois))
                face = np.array(faces[max_index])
                mat = Ms[max_index]
                roi_box = rois[max_index]
            roi_img = frame[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]]

           # "The default normalization to the range of -1 to 1, where the model input is in RGB format
            face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)

            self.queue_list[0].put([face, mat, [], frame, roi_img, roi_box])

            if self.fps_counter:
                counter += 1
                if (time.time() - start_time) > 10:
                    print("Consumer0 FPS: {}".format(counter / (time.time() - start_time)))
                    counter = 0
                    start_time = time.time()
        self.queue_list[0].put(None)
        print('co stop')


class Consumer1(Consumer1BaseONNX):
    def __init__(self, opt, feature_list, queue_list: list, block=True, fps_counter=False):
        super().__init__(opt, feature_list, queue_list, block, fps_counter)

    def run(self):
        counter = 0
        start_time = time.time()

        while True:
            something_in = self.queue_list[0].get()
            if something_in is None:
                break
            elif len(something_in) == 2:
                self.queue_list[1].put([None, something_in[1]])
                continue


            if len(self.feature_list) > 1:
                self.feature_list.pop(0)

            image_latent = self.feature_list[0][0]

            mask_out, swap_face_out = self.predict(something_in[0], image_latent[0].reshape(1, -1))

            mask = cv2.warpAffine(mask_out[0][0].astype(np.float32), something_in[1],
                                  something_in[4].shape[:2][::-1])
            mask[mask > 0.2] = 1
            mask = mask[:, :, np.newaxis].astype(np.uint8)
            swap_face = swap_face_out[0].transpose((1, 2, 0)).astype(np.float32)

            self.queue_list[1].put(
                [swap_face, something_in[1], mask, something_in[3], something_in[4], something_in[5]])

            if self.fps_counter:
                counter += 1
                if (time.time() - start_time) > 10:
                    print("Consumer1 FPS: {}".format(counter / (time.time() - start_time)))
                    counter = 0
                    start_time = time.time()
        self.queue_list[1].put(None)
        print('c1 stop')


class Consumer2(Consumer2Base):
    def __init__(self, queue_list: list, frame_queue_out, block=True, fps_counter=False):
        super().__init__(queue_list, frame_queue_out, block, fps_counter)
        self.face_detect_flag = True

    def forward_func(self, something_in):

        # do your work here.
        if len(something_in) == 2:
            self.face_detect_flag = False
            frame = something_in[1]
            frame_out = frame.astype(np.uint8)
        else:
            self.face_detect_flag = True
            # swap_face = something_in[0]
            swap_face = ((something_in[0] + 1) / 2)
            frame_out = reverse2wholeimage_hifi_trt_roi(
                swap_face, something_in[1], something_in[2],
                something_in[3], something_in[4], something_in[5]
            )
        self.frame_queue_out.put([frame_out, self.face_detect_flag])
        # cv2.imshow('output', frame_out)
        # cv2.waitKey(1)


class HifiFaceRealTime:

    def __init__(self, feature_dict_list_, frame_queue_in, frame_queue_out, gpu=True, model_name=''):
        self.opt = HifiTestOptions().parse()
        if model_name != '':
            self.opt.model_name = model_name
        self.opt.input_size = 256
        self.feature_dict_list = feature_dict_list_
        self.frame_queue_in = frame_queue_in
        self.frame_queue_out = frame_queue_out

        self.gpu = gpu

    def forward(self):
        self.q0 = Queue(2)
        self.q1 = Queue(2)

        self.c0 = Consumer0(self.opt, self.frame_queue_in, [self.q0], fps_counter=False)
        self.c1 = Consumer1(self.opt, self.feature_dict_list, [self.q0, self.q1], fps_counter=False)
        self.c2 = Consumer2([self.q1], self.frame_queue_out, fps_counter=False)

        self.c0.start()
        self.c1.start()
        self.c2.start()

        self.c0.join()
        self.c1.join()
        self.c2.join()
        return