File size: 9,427 Bytes
89cf463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import cv2
import time
import numpy as np
import numexpr as ne
from multiprocessing.dummy import Process, Queue
from options.hifi_test_options import HifiTestOptions
from HifiFaceAPI_parallel_base import Consumer0Base, Consumer2Base, Consumer3Base,Consumer1BaseONNX
from color_transfer import color_transfer
def np_norm(x):
return (x - np.average(x)) / np.std(x)
def reverse2wholeimage_hifi_trt_roi(swaped_img, mat_rev, img_mask, frame, roi_img, roi_box):
target_image = cv2.warpAffine(swaped_img, mat_rev, roi_img.shape[:2][::-1], borderMode=cv2.BORDER_REPLICATE)[
...,
::-1]
local_dict = {
'img_mask': img_mask,
'target_image': target_image,
'roi_img': roi_img,
}
img = ne.evaluate('img_mask * (target_image * 255)+(1 - img_mask) * roi_img', local_dict=local_dict,
global_dict=None)
img = img.astype(np.uint8)
frame[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]] = img
return frame
def get_max_face(np_rois):
roi_areas = []
for index in range(np_rois.shape[0]):
roi_areas.append((np_rois[index, 2] - np_rois[index, 0]) * (np_rois[index, 3] - np_rois[index, 1]))
return np.argmax(np.array(roi_areas))
class Consumer0(Consumer0Base):
def __init__(self, opt, frame_queue_in, queue_list: list, block=True, fps_counter=False, align_method='68'):
super().__init__(opt, frame_queue_in, None, queue_list, block, fps_counter)
self.align_method = align_method
def run(self):
counter = 0
start_time = time.time()
kpss_old = None
rois_old = faces_old = Ms_old = masks_old = None
while True:
frame = self.frame_queue_in.get()
if frame is None:
break
try:
_, bboxes, kpss = self.scrfd_detector.get_bboxes(frame, max_num=0)
if self.align_method == '5class':
rois, faces, Ms, masks = self.mtcnn_detector.align_multi_for_scrfd(
frame, bboxes, kpss, limit=1, min_face_size=30,
crop_size=(self.crop_size, self.crop_size), apply_roi=True, detector=None
)
else:
rois, faces, Ms, masks = self.face_alignment.forward(
frame, bboxes, kpss, limit=5, min_face_size=30,
crop_size=(self.crop_size, self.crop_size), apply_roi=True
)
except (TypeError, IndexError, ValueError) as e:
self.queue_list[0].put([None, frame])
continue
if len(faces)==0:
self.queue_list[0].put([None, frame])
continue
elif len(faces)==1:
face = np.array(faces[0])
mat = Ms[0]
roi_box = rois[0]
else:
max_index = get_max_face(np.array(rois))
face = np.array(faces[max_index])
mat = Ms[max_index]
roi_box = rois[max_index]
roi_img = frame[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]]
#The default normalization to the range of -1 to 1, where the model input is in RGB format
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
self.queue_list[0].put([face, mat, [], frame, roi_img, roi_box])
if self.fps_counter:
counter += 1
if (time.time() - start_time) > 10:
print("Consumer0 FPS: {}".format(counter / (time.time() - start_time)))
counter = 0
start_time = time.time()
self.queue_list[0].put(None)
print('co stop')
class Consumer1(Consumer1BaseONNX):
def __init__(self, opt, feature_list, queue_list: list, block=True, fps_counter=False):
super().__init__(opt, feature_list, queue_list, block, fps_counter)
def run(self):
counter = 0
start_time = time.time()
while True:
something_in = self.queue_list[0].get()
if something_in is None:
break
elif len(something_in) == 2:
self.queue_list[1].put([None, something_in[1]])
continue
if len(self.feature_list) > 1:
self.feature_list.pop(0)
image_latent = self.feature_list[0][0]
mask_out, swap_face_out = self.predict(something_in[0], image_latent[0].reshape(1, -1))
mask = cv2.warpAffine(mask_out[0][0].astype(np.float32), something_in[1],
something_in[4].shape[:2][::-1])
mask[mask > 0.2] = 1
mask = mask[:, :, np.newaxis].astype(np.uint8)
swap_face = swap_face_out[0].transpose((1, 2, 0)).astype(np.float32)
self.queue_list[1].put(
[swap_face, something_in[1], mask, something_in[3], something_in[4], something_in[5], something_in[0]])
if self.fps_counter:
counter += 1
if (time.time() - start_time) > 10:
print("Consumer1 FPS: {}".format(counter / (time.time() - start_time)))
counter = 0
start_time = time.time()
self.queue_list[1].put(None)
print('c1 stop')
class Consumer2(Consumer2Base):
def __init__(self, queue_list: list, frame_queue_out, block=True, fps_counter=False):
super().__init__(queue_list, frame_queue_out, block, fps_counter)
def forward_func(self, something_in):
if len(something_in) == 2:
frame = something_in[1]
frame_out = frame.astype(np.uint8)
else:
swap_face = ((something_in[0] + 1) / 2)
frame_out = reverse2wholeimage_hifi_trt_roi(
swap_face, something_in[1], something_in[2],
something_in[3], something_in[4], something_in[5]
)
self.frame_queue_out.put(frame_out)
# cv2.imshow('output', frame_out)
# cv2.waitKey(1)
class Consumer3(Consumer3Base):
def __init__(self, queue_list, block=True, fps_counter=False, use_gfpgan=True, sr_weight=1.0,
use_color_trans=False, color_trans_mode=''):
super().__init__(queue_list, block, fps_counter)
self.use_gfpgan = use_gfpgan
self.sr_weight = sr_weight
self.use_color_trans = use_color_trans
self.color_trans_mode = color_trans_mode
def forward_func(self, something_in):
if len(something_in) == 2:
self.queue_list[1].put([None, something_in[1]])
else:
swap_face = something_in[0]
target_face = (something_in[6] / 255).astype(np.float32)
if self.use_gfpgan:
sr_face = self.gfp.forward(swap_face)
if self.sr_weight != 1.0:
sr_face = cv2.addWeighted(sr_face, alpha=self.sr_weight, src2=swap_face, beta=1.0 - self.sr_weight, gamma=0, dtype=cv2.CV_32F)
if self.use_color_trans:
transed_face = color_transfer(self.color_trans_mode, (sr_face + 1) / 2, target_face)
result_face = (transed_face * 2) - 1
else:
result_face = sr_face
else:
if self.use_color_trans:
transed_face = color_transfer(self.color_trans_mode, (swap_face + 1) / 2, target_face)
result_face = (transed_face * 2) - 1
else:
result_face = swap_face
self.queue_list[1].put([result_face, something_in[1], something_in[2], something_in[3],
something_in[4], something_in[5]])
class HifiFaceRealTime:
def __init__(self, feature_dict_list_, frame_queue_in, frame_queue_out, gpu=True, model_name='er8_bs1', align_method='68',
use_gfpgan=True, sr_weight=1.0, use_color_trans=False, color_trans_mode='rct'):
self.opt = HifiTestOptions().parse()
if model_name != '':
self.opt.model_name = model_name
self.opt.input_size = 256
self.feature_dict_list = feature_dict_list_
self.frame_queue_in = frame_queue_in
self.frame_queue_out = frame_queue_out
self.gpu = gpu
self.align_method = align_method
self.use_gfpgan = use_gfpgan
self.sr_weight = sr_weight
self.use_color_trans = use_color_trans
self.color_trans_mode = color_trans_mode
def forward(self):
self.q0 = Queue(2)
self.q1 = Queue(2)
self.q2 = Queue(2)
self.c0 = Consumer0(self.opt, self.frame_queue_in, [self.q0], fps_counter=False, align_method=self.align_method)
self.c1 = Consumer1(self.opt, self.feature_dict_list, [self.q0, self.q1], fps_counter=False)
self.c3 = Consumer3([self.q1, self.q2], fps_counter=False,
use_gfpgan=self.use_gfpgan, sr_weight=self.sr_weight,
use_color_trans=self.use_color_trans, color_trans_mode=self.color_trans_mode)
self.c2 = Consumer2([self.q2], self.frame_queue_out, fps_counter=False)
self.c0.start()
self.c1.start()
self.c3.start()
self.c2.start()
self.c0.join()
self.c1.join()
self.c3.join()
self.c2.join()
return
|