File size: 4,937 Bytes
89cf463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import cv2
import numpy as np
from skimage import transform as trans

src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
                 [51.157, 89.050], [57.025, 89.702]],
                dtype=np.float32)
# <--left
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
                 [45.177, 86.190], [64.246, 86.758]],
                dtype=np.float32)

# ---frontal
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
                 [42.463, 87.010], [69.537, 87.010]],
                dtype=np.float32)

# -->right
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
                 [48.167, 86.758], [67.236, 86.190]],
                dtype=np.float32)

# -->right profile
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
                 [55.388, 89.702], [61.257, 89.050]],
                dtype=np.float32)

multi_src = np.array([src1, src2, src3, src4, src5])
multi_src_map = {112: multi_src, 224: multi_src * 2, 512: multi_src * (512 / 112)}

arcface_src = np.array(
    [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
     [41.5493, 92.3655], [70.7299, 92.2041]],
    dtype=np.float32)

# mtcnn_src = [
#     [30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
#     [33.54930115, 92.3655014], [62.72990036, 92.20410156]
# ]
# tmp_crop_size = np.array((96, 112))
# size_diff = max(tmp_crop_size) - tmp_crop_size
# mtcnn_src += size_diff / 2
# ref_pts = np.float32(mtcnn_src)
# ref_pts = (ref_pts - 112 / 2) * 0.85 + 112 / 2
# ref_pts *= 512 / 112.
# mtcnn_src_512 = ref_pts
# print(mtcnn_src_512)

mtcnn_512 = [[187.20187, 239.27705],
             [324.1236, 238.51973],
             [256.09793, 317.14795],
             [199.84871, 397.30597],
             [313.2362, 396.6788]]

mtcnn_256 = np.array(mtcnn_512) * 0.5

arcface_src_512 = arcface_src * np.array([512 / 112, 512 / 112])
arcface_src = np.expand_dims(arcface_src, axis=0)


def get_src_modify(srcs, arcface_src):
    srcs += ((arcface_src[2] - srcs[2][2]) * np.array([1, 1.8]))[None]
    return srcs


# lmk is prediction; src is template
def estimate_norm(lmk, image_size=112, mode='arcface'):
    assert lmk.shape == (5, 2)
    tform = trans.SimilarityTransform()
    lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
    min_M = []
    min_index = []
    min_error = float('inf')
    if mode == 'arcface':
        assert image_size == 112
        src = arcface_src
    elif mode == 'arcface_512':
        src = np.expand_dims(arcface_src_512, axis=0)
    elif mode == 'mtcnn_512':
        src = np.expand_dims(mtcnn_512, axis=0)
    elif mode == 'mtcnn_256':
        src = np.expand_dims(mtcnn_256, axis=0)
    elif mode == 'default_95':
        src = get_src_modify(multi_src, arcface_src[0])
        src_map = {112: src.copy(), 224: src.copy() * 2, 256: src.copy() * 256 / 112 * 0.95,
                   512: src.copy() * (512 / 112) * 0.95}
        src = src_map[image_size]
    else:
        src = multi_src_map[image_size]
    for i in np.arange(src.shape[0]):
        tform.estimate(lmk, src[i])
        M = tform.params[0:2, :]
        results = np.dot(M, lmk_tran.T)
        results = results.T
        error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1)))
        #         print(error)
        if error < min_error:
            min_error = error
            min_M = M
            min_index = i
    return min_M, min_index


def norm_crop(img, landmark, crop_size=112, mode='arcface'):
    mat, pose_index = estimate_norm(landmark, crop_size, mode)
    warped = cv2.warpAffine(img, mat, (crop_size, crop_size), borderMode=cv2.BORDER_REPLICATE)

    mat_rev = cv2.invertAffineTransform(mat)

    # # inverse the Affine transformation matrix
    # mat_rev = np.zeros([2, 3])
    # div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]
    # mat_rev[0][0] = mat[1][1] / div1
    # mat_rev[0][1] = -mat[0][1] / div1
    # mat_rev[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1
    # div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1]
    # mat_rev[1][0] = mat[1][0] / div2
    # mat_rev[1][1] = -mat[0][0] / div2
    # mat_rev[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2

    return warped, mat_rev


def apply_roi_func(img, box, facial5points):
    box = np.round(np.array(box)).astype(int)[:4]

    # roi_pad = int(0.5 * max([box[2] - box[0], box[3] - box[1]]))
    roi_pad = 0
    roi_box = np.array([
        max(0, box[0] - roi_pad),
        max(0, box[1] - roi_pad),
        min(img.shape[1], box[2] + roi_pad),
        min(img.shape[0], box[3] + roi_pad)
    ])

    roi = img[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]].copy()

    mrow1 = roi_box[1]
    mcol1 = roi_box[0]

    roi_facial5points = facial5points.copy()

    roi_facial5points[:, 0] -= mcol1
    roi_facial5points[:, 1] -= mrow1

    return roi, roi_box, roi_facial5points