File size: 4,937 Bytes
89cf463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import cv2
import numpy as np
from skimage import transform as trans
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
[51.157, 89.050], [57.025, 89.702]],
dtype=np.float32)
# <--left
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
[45.177, 86.190], [64.246, 86.758]],
dtype=np.float32)
# ---frontal
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
[42.463, 87.010], [69.537, 87.010]],
dtype=np.float32)
# -->right
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
[48.167, 86.758], [67.236, 86.190]],
dtype=np.float32)
# -->right profile
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
[55.388, 89.702], [61.257, 89.050]],
dtype=np.float32)
multi_src = np.array([src1, src2, src3, src4, src5])
multi_src_map = {112: multi_src, 224: multi_src * 2, 512: multi_src * (512 / 112)}
arcface_src = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
# mtcnn_src = [
# [30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
# [33.54930115, 92.3655014], [62.72990036, 92.20410156]
# ]
# tmp_crop_size = np.array((96, 112))
# size_diff = max(tmp_crop_size) - tmp_crop_size
# mtcnn_src += size_diff / 2
# ref_pts = np.float32(mtcnn_src)
# ref_pts = (ref_pts - 112 / 2) * 0.85 + 112 / 2
# ref_pts *= 512 / 112.
# mtcnn_src_512 = ref_pts
# print(mtcnn_src_512)
mtcnn_512 = [[187.20187, 239.27705],
[324.1236, 238.51973],
[256.09793, 317.14795],
[199.84871, 397.30597],
[313.2362, 396.6788]]
mtcnn_256 = np.array(mtcnn_512) * 0.5
arcface_src_512 = arcface_src * np.array([512 / 112, 512 / 112])
arcface_src = np.expand_dims(arcface_src, axis=0)
def get_src_modify(srcs, arcface_src):
srcs += ((arcface_src[2] - srcs[2][2]) * np.array([1, 1.8]))[None]
return srcs
# lmk is prediction; src is template
def estimate_norm(lmk, image_size=112, mode='arcface'):
assert lmk.shape == (5, 2)
tform = trans.SimilarityTransform()
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
min_M = []
min_index = []
min_error = float('inf')
if mode == 'arcface':
assert image_size == 112
src = arcface_src
elif mode == 'arcface_512':
src = np.expand_dims(arcface_src_512, axis=0)
elif mode == 'mtcnn_512':
src = np.expand_dims(mtcnn_512, axis=0)
elif mode == 'mtcnn_256':
src = np.expand_dims(mtcnn_256, axis=0)
elif mode == 'default_95':
src = get_src_modify(multi_src, arcface_src[0])
src_map = {112: src.copy(), 224: src.copy() * 2, 256: src.copy() * 256 / 112 * 0.95,
512: src.copy() * (512 / 112) * 0.95}
src = src_map[image_size]
else:
src = multi_src_map[image_size]
for i in np.arange(src.shape[0]):
tform.estimate(lmk, src[i])
M = tform.params[0:2, :]
results = np.dot(M, lmk_tran.T)
results = results.T
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1)))
# print(error)
if error < min_error:
min_error = error
min_M = M
min_index = i
return min_M, min_index
def norm_crop(img, landmark, crop_size=112, mode='arcface'):
mat, pose_index = estimate_norm(landmark, crop_size, mode)
warped = cv2.warpAffine(img, mat, (crop_size, crop_size), borderMode=cv2.BORDER_REPLICATE)
mat_rev = cv2.invertAffineTransform(mat)
# # inverse the Affine transformation matrix
# mat_rev = np.zeros([2, 3])
# div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0]
# mat_rev[0][0] = mat[1][1] / div1
# mat_rev[0][1] = -mat[0][1] / div1
# mat_rev[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1
# div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1]
# mat_rev[1][0] = mat[1][0] / div2
# mat_rev[1][1] = -mat[0][0] / div2
# mat_rev[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2
return warped, mat_rev
def apply_roi_func(img, box, facial5points):
box = np.round(np.array(box)).astype(int)[:4]
# roi_pad = int(0.5 * max([box[2] - box[0], box[3] - box[1]]))
roi_pad = 0
roi_box = np.array([
max(0, box[0] - roi_pad),
max(0, box[1] - roi_pad),
min(img.shape[1], box[2] + roi_pad),
min(img.shape[0], box[3] + roi_pad)
])
roi = img[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]].copy()
mrow1 = roi_box[1]
mcol1 = roi_box[0]
roi_facial5points = facial5points.copy()
roi_facial5points[:, 0] -= mcol1
roi_facial5points[:, 1] -= mrow1
return roi, roi_box, roi_facial5points
|