ReHiFace-S / face_feature /hifi_image_api.py
GuijiAI's picture
Upload 117 files
89cf463 verified
raw
history blame
2.31 kB
# import os
# import sys
# path = os.path.dirname(__file__)
# sys.path.append(path)
from face_feature.face_lib.face_landmark.pfpld import PFPLD
from face_feature.face_lib.face_embedding import FaceEmbedding
from face_feature.face_lib.face_detect_and_align import FaceDetect5Landmarks
import cv2
import numpy as np
from cv2box import CVImage
from PIL import Image
class HifiImage:
def __init__(self, crop_size=256):
"""
:param crop_size: 输出字典中展示图片的size
"""
self.crop_size = crop_size
self.fe = FaceEmbedding(model_type='CurricularFace-tjm', provider='gpu')
self.scrfd_detector = FaceDetect5Landmarks(mode='scrfd_500m')
self.pfpld = PFPLD()
self.image_feature_dict = {}
def get_face_feature(self, image_path):
if isinstance(image_path, str):
src_image = CVImage(image_path).rgb()
else:
src_image = np.array(image_path)
try:
borderpad = int(np.max([np.max(src_image.shape[:2]) * 0.1, 100]))
src_image = np.pad(src_image, ((borderpad, borderpad), (borderpad, borderpad), (0, 0)), 'constant',
constant_values=(0, 0))
except Exception as e:
print(f'padding fail , got {e}')
return None
bboxes_scrfd, kpss_scrfd = self.scrfd_detector.get_bboxes(src_image, min_bbox_size=64)
image_face_crop_list, m_ = self.scrfd_detector.get_multi_face(crop_size=self.crop_size,
mode='mtcnn_256')
img = np.array(image_face_crop_list[0])
lm = self.pfpld.forward(img)
lm[0][5][0] = np.min([lm[0][5][0], lm[0][48][0] - 5])
lm[0][14][0] = np.max([lm[0][14][0], lm[0][54][0] + 5])
img = cv2.rectangle(img, lm[0][11].ravel().astype(int), lm[0][14].ravel().astype(int), (0, 0, 0), -1)
img = cv2.rectangle(img, lm[0][2].ravel().astype(int), lm[0][5].ravel().astype(int), (0, 0, 0), -1)
assert len(image_face_crop_list) == 1, 'only support single face in input image'
image_latent = self.fe.latent_from_image(img).cpu().numpy()
# image_latent = self.fe.forward(img)
crop_face = image_face_crop_list[0]
return image_latent, crop_face