|
|
|
|
|
|
|
|
|
from cv2box import CVImage, MyFpsCounter |
|
from model_lib import ModelBase |
|
import numpy as np |
|
import cv2 |
|
|
|
MODEL_ZOO = { |
|
|
|
|
|
|
|
'GFPGANv1.4': { |
|
'model_path': './pretrain_models/gfpganv14_fp32_bs1_scale.onnx' |
|
}, |
|
'codeformer': { |
|
'model_path':'./pretrain_models/codeformer_fp32_bs1_scale_adain.onnx' |
|
}, |
|
|
|
} |
|
|
|
|
|
class GFPGAN(ModelBase): |
|
def __init__(self, model_type='GFPGANv1.4', provider='gpu'): |
|
super().__init__(MODEL_ZOO[model_type], provider) |
|
self.model_type = model_type |
|
self.input_std = self.input_mean = 127.5 |
|
self.input_size = (512, 512) |
|
self.model_type = model_type |
|
|
|
def forward(self, face_image): |
|
""" |
|
Args: |
|
face_image: cv2 image -1~1 RGB |
|
Returns: |
|
RGB 256x256x3 -1~1 |
|
""" |
|
face_image = (face_image + 1) / 2 |
|
face_image_h, face_image_w, _ = face_image.shape |
|
if face_image_h != 512: |
|
face_image = cv2.resize(face_image, (512, 512)) |
|
|
|
face_image = np.uint8(face_image * 255.0) |
|
|
|
image_in = CVImage(face_image).set_blob(self.input_std, self.input_mean, self.input_size).blob_in(rgb=False) |
|
if 'codeformer' in self.model_type: |
|
image_out = self.model.forward([image_in,np.array(1,dtype=np.float32)]) |
|
else: |
|
image_out = self.model.forward(image_in) |
|
|
|
|
|
output_face = ((image_out[0][0] + 1) / 2).transpose(1, 2, 0).clip(0, 1) |
|
if face_image_h != 512: |
|
output_face = cv2.resize(output_face, (face_image_w, face_image_h)) |
|
output_face = (output_face * 2 - 1.0) |
|
return output_face |
|
|
|
|
|
if __name__ == '__main__': |
|
face_img_p = 'data/source/ym-1.jpeg' |
|
fa = GFPGAN(model_type='GFPGANv1.4', provider='gpu') |
|
with MyFpsCounter() as mfc: |
|
for i in range(10): |
|
face = fa.forward(face_img_p) |
|
|
|
CVImage(face, image_format='cv2').show() |
|
|