|
|
|
|
|
|
|
|
|
from cv2box import CVImage, MyFpsCounter |
|
|
|
from model_lib import ModelBase |
|
import numpy as np |
|
import cv2 |
|
|
|
MODEL_ZOO = { |
|
'xseg_0611': { |
|
'model_path': './pretrain_models/xseg_230611_16_17.onnx', |
|
'input_dynamic_shape': [[1, 256, 256, 3]] |
|
}, |
|
} |
|
|
|
|
|
class XSEG(ModelBase): |
|
def __init__(self, model_type='xseg_0611', provider='cpu'): |
|
super().__init__(MODEL_ZOO[model_type], provider) |
|
self.model_type = model_type |
|
|
|
|
|
def forward(self, face_image): |
|
""" |
|
Args: |
|
face_image: cv2 image -1~1 RGB |
|
Returns: |
|
RGB 256x256x3 -1~1 |
|
""" |
|
face_image = (face_image + 1) / 2 |
|
if face_image.shape[-1] >= 4: |
|
if len(face_image.shape)>3: |
|
face_image = face_image[0] |
|
face_image = face_image.transpose(1, 2, 0) |
|
face_image_h, face_image_w, _ = face_image.shape |
|
if face_image_h != 256: |
|
face_image = cv2.resize(face_image, (256, 256)) |
|
image_out = self.model.forward(face_image[...,::-1][None].astype(np.float32)) |
|
|
|
output_face = (image_out[0].squeeze()).clip(0, 1) |
|
if face_image_h != 256: |
|
output_face = cv2.resize(output_face, (face_image_w, face_image_h)) |
|
return output_face |
|
|
|
|
|
if __name__ == '__main__': |
|
face_img_p = 'data/source/ym-1.jpeg' |
|
fa = XSEG(model_type='xseg_0611', provider='trt16') |
|
face_img = (cv2.resize(cv2.imread(face_img_p)/127.5-1,(512,512)))[...,::-1] |
|
|
|
with MyFpsCounter() as mfc: |
|
for i in range(20): |
|
face = fa.forward(face_img) |
|
|
|
|
|
|