import cv2 import numpy as np def LinearMotionBlur(image, size, angle): k = np.zeros((size, size), dtype=np.float32) k[ (size-1)// 2 , :] = np.ones(size, dtype=np.float32) k = cv2.warpAffine(k, cv2.getRotationMatrix2D( (size / 2 -0.5 , size / 2 -0.5 ) , angle, 1.0), (size, size) ) k = k * ( 1.0 / np.sum(k) ) return cv2.filter2D(image, -1, k) def blursharpen (img, sharpen_mode=0, kernel_size=3, amount=100): if kernel_size % 2 == 0: kernel_size += 1 if amount > 0: if sharpen_mode == 1: #box kernel = np.zeros( (kernel_size, kernel_size), dtype=np.float32) kernel[ kernel_size//2, kernel_size//2] = 1.0 box_filter = np.ones( (kernel_size, kernel_size), dtype=np.float32) / (kernel_size**2) kernel = kernel + (kernel - box_filter) * amount return cv2.filter2D(img, -1, kernel) elif sharpen_mode == 2: #gaussian blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0) img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0) return img elif amount < 0: n = -amount while n > 0: img_blur = cv2.medianBlur(img, 5) if int(n / 10) != 0: img = img_blur else: pass_power = (n % 10) / 10.0 img = img*(1.0-pass_power)+img_blur*pass_power n = max(n-10,0) return img return img