import cv2 import numpy as np from skimage import transform as trans src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007], [51.157, 89.050], [57.025, 89.702]], dtype=np.float32) # <--left src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111], [45.177, 86.190], [64.246, 86.758]], dtype=np.float32) # ---frontal src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493], [42.463, 87.010], [69.537, 87.010]], dtype=np.float32) # -->right src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111], [48.167, 86.758], [67.236, 86.190]], dtype=np.float32) # -->right profile src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007], [55.388, 89.702], [61.257, 89.050]], dtype=np.float32) multi_src = np.array([src1, src2, src3, src4, src5]) multi_src_map = {112: multi_src, 224: multi_src * 2, 512: multi_src * (512 / 112)} arcface_src = np.array( [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]], dtype=np.float32) # mtcnn_src = [ # [30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278], # [33.54930115, 92.3655014], [62.72990036, 92.20410156] # ] # tmp_crop_size = np.array((96, 112)) # size_diff = max(tmp_crop_size) - tmp_crop_size # mtcnn_src += size_diff / 2 # ref_pts = np.float32(mtcnn_src) # ref_pts = (ref_pts - 112 / 2) * 0.85 + 112 / 2 # ref_pts *= 512 / 112. # mtcnn_src_512 = ref_pts # print(mtcnn_src_512) mtcnn_512 = [[187.20187, 239.27705], [324.1236, 238.51973], [256.09793, 317.14795], [199.84871, 397.30597], [313.2362, 396.6788]] mtcnn_256 = np.array(mtcnn_512) * 0.5 arcface_src_512 = arcface_src * np.array([512 / 112, 512 / 112]) arcface_src = np.expand_dims(arcface_src, axis=0) def get_src_modify(srcs, arcface_src): srcs += ((arcface_src[2] - srcs[2][2]) * np.array([1, 1.8]))[None] return srcs # lmk is prediction; src is template def estimate_norm(lmk, image_size=112, mode='arcface'): assert lmk.shape == (5, 2) tform = trans.SimilarityTransform() lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) min_M = [] min_index = [] min_error = float('inf') if mode == 'arcface': assert image_size == 112 src = arcface_src elif mode == 'arcface_512': src = np.expand_dims(arcface_src_512, axis=0) elif mode == 'mtcnn_512': src = np.expand_dims(mtcnn_512, axis=0) elif mode == 'mtcnn_256': src = np.expand_dims(mtcnn_256, axis=0) elif mode == 'default_95': src = get_src_modify(multi_src, arcface_src[0]) src_map = {112: src.copy(), 224: src.copy() * 2, 256: src.copy() * 256 / 112 * 0.95, 512: src.copy() * (512 / 112) * 0.95} src = src_map[image_size] else: src = multi_src_map[image_size] for i in np.arange(src.shape[0]): tform.estimate(lmk, src[i]) M = tform.params[0:2, :] results = np.dot(M, lmk_tran.T) results = results.T error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1))) # print(error) if error < min_error: min_error = error min_M = M min_index = i return min_M, min_index def norm_crop(img, landmark, crop_size=112, mode='arcface'): mat, pose_index = estimate_norm(landmark, crop_size, mode) warped = cv2.warpAffine(img, mat, (crop_size, crop_size), borderMode=cv2.BORDER_REPLICATE) mat_rev = cv2.invertAffineTransform(mat) # # inverse the Affine transformation matrix # mat_rev = np.zeros([2, 3]) # div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0] # mat_rev[0][0] = mat[1][1] / div1 # mat_rev[0][1] = -mat[0][1] / div1 # mat_rev[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1 # div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1] # mat_rev[1][0] = mat[1][0] / div2 # mat_rev[1][1] = -mat[0][0] / div2 # mat_rev[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2 return warped, mat_rev def apply_roi_func(img, box, facial5points): box = np.round(np.array(box)).astype(int)[:4] # roi_pad = int(0.5 * max([box[2] - box[0], box[3] - box[1]])) roi_pad = 0 roi_box = np.array([ max(0, box[0] - roi_pad), max(0, box[1] - roi_pad), min(img.shape[1], box[2] + roi_pad), min(img.shape[0], box[3] + roi_pad) ]) roi = img[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]].copy() mrow1 = roi_box[1] mcol1 = roi_box[0] roi_facial5points = facial5points.copy() roi_facial5points[:, 0] -= mcol1 roi_facial5points[:, 1] -= mrow1 return roi, roi_box, roi_facial5points