File size: 2,603 Bytes
cd7c811
 
 
 
e2210ff
cd7c811
 
 
e2210ff
 
 
 
 
 
cd7c811
 
 
 
 
 
 
e2210ff
cd7c811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2210ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_keras_callback
- vision_transformer
model-index:
- name: Guldeniz/vit-base-patch16-224-in21k-lung_and_colon
  results: []
language:
- en
metrics:
- accuracy
library_name: transformers
pipeline_tag: image-classification
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Guldeniz/vit-base-patch16-224-in21k-lung_and_colon

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on Lung and Colon Histopathological Images dataset. This dataset can be reach via [Kaggle](https://www.kaggle.com/datasets/andrewmvd/lung-and-colon-cancer-histopathological-images).
It achieves the following results on the evaluation set:
- Train Loss: 0.0088
- Train Accuracy: 1.0
- Train Top-3-accuracy: 1.0
- Validation Loss: 0.0084
- Validation Accuracy: 0.9997
- Validation Top-3-accuracy: 1.0
- Epoch: 3

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3325, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 0.1870     | 0.9784         | 0.9985               | 0.0455          | 0.9987              | 1.0                       | 0     |
| 0.0345     | 0.9972         | 1.0                  | 0.0189          | 0.9995              | 1.0                       | 1     |
| 0.0134     | 1.0            | 1.0                  | 0.0110          | 0.9997              | 1.0                       | 2     |
| 0.0088     | 1.0            | 1.0                  | 0.0084          | 0.9997              | 1.0                       | 3     |


### Framework versions

- Transformers 4.26.1
- TensorFlow 2.12.0
- Datasets 2.10.1
- Tokenizers 0.13.3