Upload PPO MountainCar-v0 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-MountainCar-v0.zip +3 -0
- ppo-MountainCar-v0/_stable_baselines3_version +1 -0
- ppo-MountainCar-v0/data +95 -0
- ppo-MountainCar-v0/policy.optimizer.pth +3 -0
- ppo-MountainCar-v0/policy.pth +3 -0
- ppo-MountainCar-v0/pytorch_variables.pth +3 -0
- ppo-MountainCar-v0/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: MountainCar-v0
|
16 |
+
type: MountainCar-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -200.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **MountainCar-v0**
|
25 |
+
This is a trained model of a **PPO** agent playing **MountainCar-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf2b76e670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf2b76e700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf2b76e790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf2b76e820>", "_build": "<function ActorCriticPolicy._build at 0x7fcf2b76e8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcf2b76e940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcf2b76e9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf2b76ea60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcf2b76eaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf2b76eb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf2b76ec10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf2b76eca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcf2b7678d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673802109796497428, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAD5SCb+Jm0I8CvsDvwlv/bty1Qi/xcMPPMbP1b4KNiW7Y1YAv9vMajwnf8++KTZDPKsJ5L4eS/Y7MFkNv+BTFjwA7wm/Qbo3PMhs3b49YkG8PCb6vjeBabukXBW/VHRYPHri6L6ujCC74/7CvrGu77t25NG+VjzXOK+myr5gnde7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CKaIV1Oj7AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKaIS+QEIPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKaIOpbUw0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKaIMRYigTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5eDWbw0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5aEi+tbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5Rw6ySndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5NcGC7LdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5I1+AmRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5DXvphXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa486mwaBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa44Cp3otdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4zlcQiBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4vK2a2GdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4ogmqo7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4j1PFefdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4a1Cw8odX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4YGdI5HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4T9sJpndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4RoRIz4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbpCw8nuzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbo+0PYnOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbo3FUADJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbozD4xk/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboutfXwtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbopiqhlEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbojSofjkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboebNKRMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboZ75VOsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboVgx8D0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboPAfuCxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboKUmlZYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboBK+SKWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbn+UhV2idX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbn6N2ki2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbn34bjtHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcaMZxaPkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcaIa99MLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcaAQQL/kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZ7x/d6+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZ3JPqLTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZxuKoAGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZrO7g89dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZmVZ9uxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZh2GIsRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZdY4hlldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZWsA/9pdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZSJj2BbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZJAdGRWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZGLk0aZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZB42S+ydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcY/iYLLIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdLNpudf+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdLJkoWpIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdLBZZB9kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdK87p3X7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdK4T9KmLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKyzollcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKsZHd43dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKnfl6qsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKjASFoMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKejmCAddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKX3xnWbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKTLW7OFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKKBun/DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKHKOktVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKC17Y03dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKAd4mkWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7ZIxxkvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7VG0/nodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7MzMzMzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7IVdonKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7DtPYWddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6+NcW0rdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd63trsSkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6yzollcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6uUUwi8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6p3os7NdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6jLSuyNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6eeWfK7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6VbA1vVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6SlnAZbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6OR1X/6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6L5ylvZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeozyjHn2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeovt+kP+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeonZ00WNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoi7kGRndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoeT3Zf2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoYzi0fHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoSTyJ9BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoNZNfw7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoI6bONYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoEdNnGsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKen9xZMcqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKen5IpYs/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKenv/BFd+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKentQbdaddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeno+wC8wdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKenmuDBdldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-MountainCar-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5d86a72697a0198ab1ac98cea6a740694da7bfd2601da58caea3bfa0ca7f74b
|
3 |
+
size 135147
|
ppo-MountainCar-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-MountainCar-v0/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf2b76e670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf2b76e700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf2b76e790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf2b76e820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcf2b76e8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcf2b76e940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcf2b76e9d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf2b76ea60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcf2b76eaf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf2b76eb80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf2b76ec10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf2b76eca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fcf2b7678d0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
2
|
30 |
+
],
|
31 |
+
"low": "[-1.2 -0.07]",
|
32 |
+
"high": "[0.6 0.07]",
|
33 |
+
"bounded_below": "[ True True]",
|
34 |
+
"bounded_above": "[ True True]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 3,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673802109796497428,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAD5SCb+Jm0I8CvsDvwlv/bty1Qi/xcMPPMbP1b4KNiW7Y1YAv9vMajwnf8++KTZDPKsJ5L4eS/Y7MFkNv+BTFjwA7wm/Qbo3PMhs3b49YkG8PCb6vjeBabukXBW/VHRYPHri6L6ujCC74/7CvrGu77t25NG+VjzXOK+myr5gnde7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CKaIV1Oj7AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKaIS+QEIPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKaIOpbUw0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKaIMRYigTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5eDWbw0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5aEi+tbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5Rw6ySndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5NcGC7LdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5I1+AmRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa5DXvphXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa486mwaBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa44Cp3otdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4zlcQiBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4vK2a2GdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4ogmqo7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4j1PFefdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4a1Cw8odX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4YGdI5HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4T9sJpndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKa4RoRIz4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbpCw8nuzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbo+0PYnOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbo3FUADJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbozD4xk/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboutfXwtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbopiqhlEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbojSofjkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboebNKRMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboZ75VOsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboVgx8D0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboPAfuCxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboKUmlZYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKboBK+SKWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbn+UhV2idX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbn6N2ki2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKbn34bjtHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcaMZxaPkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcaIa99MLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcaAQQL/kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZ7x/d6+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZ3JPqLTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZxuKoAGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZrO7g89dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZmVZ9uxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZh2GIsRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZdY4hlldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZWsA/9pdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZSJj2BbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZJAdGRWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZGLk0aZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcZB42S+ydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKcY/iYLLIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdLNpudf+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdLJkoWpIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdLBZZB9kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdK87p3X7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdK4T9KmLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKyzollcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKsZHd43dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKnfl6qsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKjASFoMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKejmCAddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKX3xnWbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKTLW7OFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKKBun/DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKHKOktVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKC17Y03dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKdKAd4mkWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7ZIxxkvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7VG0/nodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7MzMzMzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7IVdonKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd7DtPYWddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6+NcW0rdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd63trsSkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6yzollcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6uUUwi8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6p3os7NdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6jLSuyNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6eeWfK7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6VbA1vVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6SlnAZbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6OR1X/6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKd6L5ylvZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeozyjHn2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeovt+kP+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeonZ00WNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoi7kGRndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoeT3Zf2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoYzi0fHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoSTyJ9BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoNZNfw7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoI6bONYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeoEdNnGsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKen9xZMcqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKen5IpYs/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKenv/BFd+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKentQbdaddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKeno+wC8wdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CKenmuDBdldWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-MountainCar-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:047314e2c883c990e0066761eb6812a6db0f55f317dad2cde1803d72d52e71a3
|
3 |
+
size 81273
|
ppo-MountainCar-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:053f82c3bdde9517032d4ea9976071c550df0c1e4ad00da8f83b532b1ca11a55
|
3 |
+
size 40065
|
ppo-MountainCar-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-MountainCar-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (199 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T17:16:56.118256"}
|