File size: 14,820 Bytes
29463e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
from typing import Optional

import torch
from huggingface_hub import file_exists, hf_hub_download
from huggingface_hub.utils import EntryNotFoundError
from safetensors.torch import load_file as safe_load_file

from .other import (
    EMBEDDING_LAYER_NAMES,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    check_file_exists_on_hf_hub,
    infer_device,
)
from .peft_types import PeftType


def has_valid_embedding_base_layer(layer):
    """Check if the layer has an embedding base layer"""
    return hasattr(layer, "base_layer") and isinstance(layer.base_layer, (torch.nn.Linear, torch.nn.Embedding))


def get_embedding_layer_name(model, layer, is_embedding_in_target_modules):
    """Get the name of the embedding module for a given layer."""
    for name, module in model.named_modules():
        if (not is_embedding_in_target_modules and module == layer) or module == getattr(layer, "base_layer", None):
            return name
    return None


def get_peft_model_state_dict(
    model, state_dict=None, adapter_name="default", unwrap_compiled=False, save_embedding_layers="auto"
):
    """
    Get the state dict of the Peft model.

    Args:
        model ([`PeftModel`]): The Peft model. When using torch.nn.DistributedDataParallel, DeepSpeed or FSDP,
            the model should be the underlying model/unwrapped model (i.e. model.module).
        state_dict (`dict`, *optional*, defaults to `None`):
            The state dict of the model. If not provided, the state dict of the passed model will be used.
        adapter_name (`str`, *optional*, defaults to `"default"`):
            The name of the adapter whose state dict should be returned.
        unwrap_compiled (`bool`, *optional*, defaults to `False`):
            Whether to unwrap the model if torch.compile was used.
        save_embedding_layers (`Union[bool, str]`, , *optional*, defaults to `auto`):
            If `True`, save the embedding layers in addition to adapter weights. If `auto`, checks the common embedding
            layers `peft.utils.other.EMBEDDING_LAYER_NAMES` in config's `target_modules` when available. Based on it
            sets the boolean flag. This only works for 🤗 transformers models.
    """
    if unwrap_compiled:
        model = getattr(model, "_orig_mod", model)

    config = model.peft_config[adapter_name]
    if state_dict is None:
        state_dict = model.state_dict()
    if config.peft_type in (PeftType.LORA, PeftType.ADALORA):
        # to_return = lora_state_dict(model, bias=model.peft_config.bias)
        # adapted from `https://github.com/microsoft/LoRA/blob/main/loralib/utils.py`
        # to be used directly with the state dict which is necessary when using DeepSpeed or FSDP
        bias = config.bias
        if bias == "none":
            to_return = {k: state_dict[k] for k in state_dict if "lora_" in k}
        elif bias == "all":
            to_return = {k: state_dict[k] for k in state_dict if "lora_" in k or "bias" in k}
        elif bias == "lora_only":
            to_return = {}
            for k in state_dict:
                if "lora_" in k:
                    to_return[k] = state_dict[k]
                    bias_name = k.split("lora_")[0] + "bias"
                    if bias_name in state_dict:
                        to_return[bias_name] = state_dict[bias_name]
        else:
            raise NotImplementedError
        to_return = {k: v for k, v in to_return.items() if (("lora_" in k and adapter_name in k) or ("bias" in k))}
        if config.peft_type == PeftType.ADALORA:
            rank_pattern = config.rank_pattern
            if rank_pattern is not None:
                rank_pattern = {k.replace(f".{adapter_name}", ""): v for k, v in rank_pattern.items()}
                config.rank_pattern = rank_pattern
                to_return = model.resize_state_dict_by_rank_pattern(rank_pattern, to_return, adapter_name)

    elif config.peft_type == PeftType.LOHA:
        to_return = {k: state_dict[k] for k in state_dict if "hada_" in k}

    elif config.peft_type == PeftType.LOKR:
        to_return = {k: state_dict[k] for k in state_dict if "lokr_" in k}

    elif config.peft_type == PeftType.ADAPTION_PROMPT:
        to_return = {k: state_dict[k] for k in state_dict if k.split(".")[-1].startswith("adaption_")}
    elif config.is_prompt_learning:
        to_return = {}
        if config.peft_type == PeftType.MULTITASK_PROMPT_TUNING:
            to_return["prefix_task_cols"] = model.prompt_encoder[adapter_name].prefix_task_cols
            to_return["prefix_task_rows"] = model.prompt_encoder[adapter_name].prefix_task_rows
            prompt_embeddings = model.prompt_encoder[adapter_name].embedding.weight
        else:
            if config.inference_mode:
                prompt_embeddings = model.prompt_encoder[adapter_name].embedding.weight
            else:
                prompt_embeddings = model.get_prompt_embedding_to_save(adapter_name)
        to_return["prompt_embeddings"] = prompt_embeddings
    elif config.peft_type == PeftType.IA3:
        to_return = {k: state_dict[k] for k in state_dict if "ia3_" in k}
    elif config.peft_type == PeftType.OFT:
        to_return = {k: state_dict[k] for k in state_dict if "oft_" in k}
    elif config.peft_type == PeftType.POLY:
        to_return = {k: state_dict[k] for k in state_dict if "poly_" in k}
    else:
        raise NotImplementedError
    if getattr(model, "modules_to_save", None) is not None:
        for key, value in state_dict.items():
            if any(f"{module_name}.modules_to_save.{adapter_name}" in key for module_name in model.modules_to_save):
                to_return[key.replace("modules_to_save.", "")] = value

    # check the common embedding layers in `target_modules` to reset `save_embedding_layers` if necessary
    is_embedding_in_target_modules = False
    if (
        save_embedding_layers == "auto"
        and hasattr(config, "target_modules")
        and any(k in config.target_modules for k in EMBEDDING_LAYER_NAMES)
    ):
        warnings.warn("Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.")
        save_embedding_layers = is_embedding_in_target_modules = True
    elif save_embedding_layers == "auto":
        vocab_size = getattr(getattr(model, "config", None), "vocab_size", None)
        model_id = getattr(config, "base_model_name_or_path", None)

        # For some models e.g. diffusers the text config file is stored in a subfolder
        # we need to make sure we can download that config.
        has_remote_config = False

        # ensure that this check is not performed in HF offline mode, see #1452
        if model_id is not None:
            exists = check_file_exists_on_hf_hub(model_id, "config.json")
            if exists is None:
                # check failed, could not determine if it exists or not
                warnings.warn(
                    f"Could not find a config file in {model_id} - will assume that the vocabulary was not modified."
                )
                has_remote_config = False
            else:
                has_remote_config = exists

        # check if the vocab size of the base model is different from the vocab size of the finetuned model
        if (
            vocab_size
            and model_id
            and has_remote_config
            and (vocab_size != model.config.__class__.from_pretrained(model_id).vocab_size)
        ):
            warnings.warn(
                "Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning."
            )
            save_embedding_layers = True
        else:
            save_embedding_layers = False

    if save_embedding_layers and hasattr(model, "get_input_embeddings"):
        for layer in [model.get_input_embeddings(), model.get_output_embeddings()]:
            if not is_embedding_in_target_modules or has_valid_embedding_base_layer(layer):
                # support from version >= 0.6.2
                embedding_module_name = get_embedding_layer_name(model, layer, is_embedding_in_target_modules)
                if embedding_module_name:
                    to_return.update({k: v for k, v in state_dict.items() if embedding_module_name in k})
    elif save_embedding_layers:
        warnings.warn("Could not identify embedding layer(s) because the model is not a 🤗 transformers model.")

    to_return = {k.replace(f".{adapter_name}", ""): v for k, v in to_return.items()}
    return to_return


def set_peft_model_state_dict(model, peft_model_state_dict, adapter_name="default"):
    """
    Set the state dict of the Peft model.

    Args:
        model ([`PeftModel`]): The Peft model.
        peft_model_state_dict (`dict`): The state dict of the Peft model.
    """
    config = model.peft_config[adapter_name]
    state_dict = {}
    if getattr(model, "modules_to_save", None) is not None:
        for key, value in peft_model_state_dict.items():
            if any(module_name in key for module_name in model.modules_to_save):
                for module_name in model.modules_to_save:
                    if module_name in key:
                        key = key.replace(module_name, f"{module_name}.modules_to_save.{adapter_name}")
                        break
            state_dict[key] = value
    else:
        state_dict = peft_model_state_dict

    if config.peft_type in (
        PeftType.LORA,
        PeftType.LOHA,
        PeftType.LOKR,
        PeftType.ADALORA,
        PeftType.IA3,
        PeftType.OFT,
        PeftType.POLY,
    ):
        peft_model_state_dict = {}
        parameter_prefix = {
            PeftType.IA3: "ia3_",
            PeftType.LORA: "lora_",
            PeftType.ADALORA: "lora_",
            PeftType.LOHA: "hada_",
            PeftType.LOKR: "lokr_",
            PeftType.OFT: "oft_",
            PeftType.POLY: "poly_",
        }[config.peft_type]
        for k, v in state_dict.items():
            if parameter_prefix in k:
                suffix = k.split(parameter_prefix)[1]
                if "." in suffix:
                    suffix_to_replace = ".".join(suffix.split(".")[1:])
                    k = k.replace(suffix_to_replace, f"{adapter_name}.{suffix_to_replace}")
                else:
                    k = f"{k}.{adapter_name}"
                peft_model_state_dict[k] = v
            else:
                peft_model_state_dict[k] = v
        if config.peft_type == PeftType.ADALORA:
            rank_pattern = config.rank_pattern
            if rank_pattern is not None:
                model.resize_modules_by_rank_pattern(rank_pattern, adapter_name)
    elif config.is_prompt_learning or config.peft_type == PeftType.ADAPTION_PROMPT:
        peft_model_state_dict = state_dict
    else:
        raise NotImplementedError

    load_result = model.load_state_dict(peft_model_state_dict, strict=False)
    if config.is_prompt_learning:
        model.prompt_encoder[adapter_name].embedding.load_state_dict(
            {"weight": peft_model_state_dict["prompt_embeddings"]}, strict=True
        )

    if config.peft_type == PeftType.MULTITASK_PROMPT_TUNING:
        model.prompt_encoder[adapter_name].load_state_dict(peft_model_state_dict, strict=False)
    return load_result


def load_peft_weights(model_id: str, device: Optional[str] = None, **hf_hub_download_kwargs) -> dict:
    r"""
    A helper method to load the PEFT weights from the HuggingFace Hub or locally

    Args:
        model_id (`str`):
            The local path to the adapter weights or the name of the adapter to load from the HuggingFace Hub.
        device (`str`):
            The device to load the weights onto.
        hf_hub_download_kwargs (`dict`):
            Additional arguments to pass to the `hf_hub_download` method when loading from the HuggingFace Hub.
    """
    path = (
        os.path.join(model_id, hf_hub_download_kwargs["subfolder"])
        if hf_hub_download_kwargs.get("subfolder", None) is not None
        else model_id
    )

    if device is None:
        device = infer_device()

    if os.path.exists(os.path.join(path, SAFETENSORS_WEIGHTS_NAME)):
        filename = os.path.join(path, SAFETENSORS_WEIGHTS_NAME)
        use_safetensors = True
    elif os.path.exists(os.path.join(path, WEIGHTS_NAME)):
        filename = os.path.join(path, WEIGHTS_NAME)
        use_safetensors = False
    else:
        token = hf_hub_download_kwargs.get("token", None)
        if token is None:
            token = hf_hub_download_kwargs.get("use_auth_token", None)

        hub_filename = (
            os.path.join(hf_hub_download_kwargs["subfolder"], SAFETENSORS_WEIGHTS_NAME)
            if hf_hub_download_kwargs.get("subfolder", None) is not None
            else SAFETENSORS_WEIGHTS_NAME
        )
        has_remote_safetensors_file = file_exists(
            repo_id=model_id,
            filename=hub_filename,
            revision=hf_hub_download_kwargs.get("revision", None),
            repo_type=hf_hub_download_kwargs.get("repo_type", None),
            token=token,
        )
        use_safetensors = has_remote_safetensors_file

        if has_remote_safetensors_file:
            # Priority 1: load safetensors weights
            filename = hf_hub_download(
                model_id,
                SAFETENSORS_WEIGHTS_NAME,
                **hf_hub_download_kwargs,
            )
        else:
            try:
                filename = hf_hub_download(model_id, WEIGHTS_NAME, **hf_hub_download_kwargs)
            except EntryNotFoundError:
                raise ValueError(
                    f"Can't find weights for {model_id} in {model_id} or in the Hugging Face Hub. "
                    f"Please check that the file {WEIGHTS_NAME} or {SAFETENSORS_WEIGHTS_NAME} is present at {model_id}."
                )

    if use_safetensors:
        if hasattr(torch.backends, "mps") and (device == torch.device("mps")):
            adapters_weights = safe_load_file(filename, device="cpu")
        else:
            adapters_weights = safe_load_file(filename, device=device)
    else:
        adapters_weights = torch.load(filename, map_location=torch.device(device))

    return adapters_weights