|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import json |
|
import os |
|
from dataclasses import asdict, dataclass, field |
|
from typing import Dict, Optional, Union |
|
|
|
from huggingface_hub import hf_hub_download |
|
from transformers.utils import PushToHubMixin |
|
|
|
from .utils import CONFIG_NAME, PeftType, TaskType |
|
|
|
|
|
@dataclass |
|
class PeftConfigMixin(PushToHubMixin): |
|
r""" |
|
This is the base configuration class for PEFT adapter models. It contains all the methods that are common to all |
|
PEFT adapter models. This class inherits from [`~transformers.utils.PushToHubMixin`] which contains the methods to |
|
push your model to the Hub. The method `save_pretrained` will save the configuration of your adapter model in a |
|
directory. The method `from_pretrained` will load the configuration of your adapter model from a directory. |
|
|
|
Args: |
|
peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use. |
|
""" |
|
|
|
peft_type: Optional[PeftType] = field(default=None, metadata={"help": "The type of PEFT model."}) |
|
auto_mapping: Optional[dict] = field( |
|
default=None, metadata={"help": "An auto mapping dict to help retrieve the base model class if needed."} |
|
) |
|
|
|
def to_dict(self) -> Dict: |
|
r""" |
|
Returns the configuration for your adapter model as a dictionary. |
|
""" |
|
return asdict(self) |
|
|
|
def save_pretrained(self, save_directory: str, **kwargs) -> None: |
|
r""" |
|
This method saves the configuration of your adapter model in a directory. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory where the configuration will be saved. |
|
kwargs (additional keyword arguments, *optional*): |
|
Additional keyword arguments passed along to the [`~transformers.utils.PushToHubMixin.push_to_hub`] |
|
method. |
|
""" |
|
if os.path.isfile(save_directory): |
|
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
auto_mapping_dict = kwargs.pop("auto_mapping_dict", None) |
|
|
|
output_dict = asdict(self) |
|
|
|
for key, value in output_dict.items(): |
|
if isinstance(value, set): |
|
output_dict[key] = list(value) |
|
|
|
output_path = os.path.join(save_directory, CONFIG_NAME) |
|
|
|
|
|
if auto_mapping_dict is not None: |
|
output_dict["auto_mapping"] = auto_mapping_dict |
|
|
|
|
|
with open(output_path, "w") as writer: |
|
writer.write(json.dumps(output_dict, indent=2, sort_keys=True)) |
|
|
|
@classmethod |
|
def from_peft_type(cls, **kwargs): |
|
r""" |
|
This method loads the configuration of your adapter model from a set of kwargs. |
|
|
|
The appropriate configuration type is determined by the `peft_type` argument. If `peft_type` is not provided, |
|
the calling class type is instantiated. |
|
|
|
Args: |
|
kwargs (configuration keyword arguments): |
|
Keyword arguments passed along to the configuration initialization. |
|
""" |
|
|
|
from peft_mora.mapping import PEFT_TYPE_TO_CONFIG_MAPPING |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "peft_type" in kwargs: |
|
peft_type = kwargs["peft_type"] |
|
config_cls = PEFT_TYPE_TO_CONFIG_MAPPING[peft_type] |
|
else: |
|
config_cls = cls |
|
|
|
return config_cls(**kwargs) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: str, subfolder: Optional[str] = None, **kwargs): |
|
r""" |
|
This method loads the configuration of your adapter model from a directory. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str`): |
|
The directory or the Hub repository id where the configuration is saved. |
|
kwargs (additional keyword arguments, *optional*): |
|
Additional keyword arguments passed along to the child class initialization. |
|
""" |
|
path = ( |
|
os.path.join(pretrained_model_name_or_path, subfolder) |
|
if subfolder is not None |
|
else pretrained_model_name_or_path |
|
) |
|
|
|
hf_hub_download_kwargs, class_kwargs, _ = cls._split_kwargs(kwargs) |
|
|
|
if os.path.isfile(os.path.join(path, CONFIG_NAME)): |
|
config_file = os.path.join(path, CONFIG_NAME) |
|
else: |
|
try: |
|
config_file = hf_hub_download( |
|
pretrained_model_name_or_path, CONFIG_NAME, subfolder=subfolder, **hf_hub_download_kwargs |
|
) |
|
except Exception: |
|
raise ValueError(f"Can't find '{CONFIG_NAME}' at '{pretrained_model_name_or_path}'") |
|
|
|
loaded_attributes = cls.from_json_file(config_file) |
|
kwargs = {**class_kwargs, **loaded_attributes} |
|
return cls.from_peft_type(**kwargs) |
|
|
|
@classmethod |
|
def from_json_file(cls, path_json_file: str, **kwargs): |
|
r""" |
|
Loads a configuration file from a json file. |
|
|
|
Args: |
|
path_json_file (`str`): |
|
The path to the json file. |
|
""" |
|
with open(path_json_file) as file: |
|
json_object = json.load(file) |
|
|
|
return json_object |
|
|
|
@classmethod |
|
def _split_kwargs(cls, kwargs): |
|
hf_hub_download_kwargs = {} |
|
class_kwargs = {} |
|
other_kwargs = {} |
|
|
|
for key, value in kwargs.items(): |
|
if key in inspect.signature(hf_hub_download).parameters: |
|
hf_hub_download_kwargs[key] = value |
|
elif key in list(cls.__annotations__): |
|
class_kwargs[key] = value |
|
else: |
|
other_kwargs[key] = value |
|
|
|
return hf_hub_download_kwargs, class_kwargs, other_kwargs |
|
|
|
@classmethod |
|
def _get_peft_type( |
|
cls, |
|
model_id: str, |
|
**hf_hub_download_kwargs, |
|
): |
|
subfolder = hf_hub_download_kwargs.get("subfolder", None) |
|
|
|
path = os.path.join(model_id, subfolder) if subfolder is not None else model_id |
|
|
|
if os.path.isfile(os.path.join(path, CONFIG_NAME)): |
|
config_file = os.path.join(path, CONFIG_NAME) |
|
else: |
|
try: |
|
config_file = hf_hub_download( |
|
model_id, |
|
CONFIG_NAME, |
|
**hf_hub_download_kwargs, |
|
) |
|
except Exception: |
|
raise ValueError(f"Can't find '{CONFIG_NAME}' at '{model_id}'") |
|
|
|
loaded_attributes = cls.from_json_file(config_file) |
|
return loaded_attributes["peft_type"] |
|
|
|
@property |
|
def is_prompt_learning(self) -> bool: |
|
r""" |
|
Utility method to check if the configuration is for prompt learning. |
|
""" |
|
return False |
|
|
|
@property |
|
def is_adaption_prompt(self) -> bool: |
|
"""Return True if this is an adaption prompt config.""" |
|
return False |
|
|
|
|
|
@dataclass |
|
class PeftConfig(PeftConfigMixin): |
|
""" |
|
This is the base configuration class to store the configuration of a [`PeftModel`]. |
|
|
|
Args: |
|
peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use. |
|
task_type (Union[[`~peft.utils.config.TaskType`], `str`]): The type of task to perform. |
|
inference_mode (`bool`, defaults to `False`): Whether to use the Peft model in inference mode. |
|
""" |
|
|
|
base_model_name_or_path: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the base model to use."} |
|
) |
|
revision: Optional[str] = field(default=None, metadata={"help": "The specific model version to use."}) |
|
peft_type: Optional[Union[str, PeftType]] = field(default=None, metadata={"help": "Peft type"}) |
|
task_type: Optional[Union[str, TaskType]] = field(default=None, metadata={"help": "Task type"}) |
|
inference_mode: bool = field(default=False, metadata={"help": "Whether to use inference mode"}) |
|
|
|
|
|
@dataclass |
|
class PromptLearningConfig(PeftConfig): |
|
""" |
|
This is the base configuration class to store the configuration of [`PrefixTuning`], [`PromptEncoder`], or |
|
[`PromptTuning`]. |
|
|
|
Args: |
|
num_virtual_tokens (`int`): The number of virtual tokens to use. |
|
token_dim (`int`): The hidden embedding dimension of the base transformer model. |
|
num_transformer_submodules (`int`): The number of transformer submodules in the base transformer model. |
|
num_attention_heads (`int`): The number of attention heads in the base transformer model. |
|
num_layers (`int`): The number of layers in the base transformer model. |
|
""" |
|
|
|
num_virtual_tokens: int = field(default=None, metadata={"help": "Number of virtual tokens"}) |
|
token_dim: int = field( |
|
default=None, metadata={"help": "The hidden embedding dimension of the base transformer model"} |
|
) |
|
num_transformer_submodules: Optional[int] = field( |
|
default=None, metadata={"help": "Number of transformer submodules"} |
|
) |
|
num_attention_heads: Optional[int] = field(default=None, metadata={"help": "Number of attention heads"}) |
|
num_layers: Optional[int] = field(default=None, metadata={"help": "Number of transformer layers"}) |
|
|
|
@property |
|
def is_prompt_learning(self) -> bool: |
|
r""" |
|
Utility method to check if the configuration is for prompt learning. |
|
""" |
|
return True |
|
|