Gustrd commited on
Commit
66774f7
·
1 Parent(s): c5061b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md CHANGED
@@ -1,3 +1,85 @@
1
  ---
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: pt
3
  license: apache-2.0
4
+ tags:
5
+ - generated_from_trainer
6
+ - whisper-event
7
+ datasets:
8
+ - mozilla-foundation/common_voice_11_0
9
+ metrics:
10
+ - wer
11
+ model-index:
12
+ - name: openai/whisper-medium
13
+ results:
14
+ - task:
15
+ name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: mozilla-foundation/common_voice_11_0
19
+ type: mozilla-foundation/common_voice_11_0
20
+ config: pt
21
+ split: test
22
+ args: pt
23
+ metrics:
24
+ - name: Wer
25
+ type: wer
26
+ value: 6.598745817992301
27
  ---
28
+
29
+ This model is a conversion to ggml from [pierreguillou/whisper-medium-portuguese](https://huggingface.co/pierreguillou/whisper-medium-portuguese) .
30
+
31
+ The conversion was done at 2023-09-11 with the official script convert-h5-to-ggml.py from whisper.cpp. No special parameters were used.
32
+
33
+ # Original Card - Portuguese Medium Whisper
34
+
35
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.2628
38
+ - Wer: 6.5987
39
+
40
+ ## Blog post
41
+
42
+ All information about this model in this blog post: [Speech-to-Text & IA | Transcreva qualquer áudio para o português com o Whisper (OpenAI)... sem nenhum custo!](https://medium.com/@pierre_guillou/speech-to-text-ia-transcreva-qualquer-%C3%A1udio-para-o-portugu%C3%AAs-com-o-whisper-openai-sem-ad0c17384681).
43
+
44
+ ## New SOTA
45
+
46
+ The Normalized WER in the [OpenAI Whisper article](https://cdn.openai.com/papers/whisper.pdf) with the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) test dataset is 8.1.
47
+
48
+ As this test dataset is similar to the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) test dataset used to evaluate our model (WER and WER Norm), it means that **our Portuguese Medium Whisper is better than the [Medium Whisper](https://huggingface.co/openai/whisper-medium) model at transcribing audios Portuguese in text** (and even better than the [Whisper Large](https://huggingface.co/openai/whisper-large) that has a WER Norm of 7.1!).
49
+
50
+ ![OpenAI results with Whisper Medium and Test dataset of Commons Voice 9.0](https://huggingface.co/pierreguillou/whisper-medium-portuguese/resolve/main/whisper_medium_portuguese_wer_commonvoice9.png)
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 9e-06
58
+ - train_batch_size: 32
59
+ - eval_batch_size: 16
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_steps: 500
64
+ - training_steps: 6000
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
70
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
71
+ | 0.0333 | 2.07 | 1500 | 0.2073 | 6.9770 |
72
+ | 0.0061 | 5.05 | 3000 | 0.2628 | 6.5987 |
73
+ | 0.0007 | 8.03 | 4500 | 0.2960 | 6.6979 |
74
+ | 0.0004 | 11.0 | 6000 | 0.3212 | 6.6794 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.26.0.dev0
80
+ - Pytorch 1.13.0+cu117
81
+ - Datasets 2.7.1.dev0
82
+ - Tokenizers 0.13.2
83
+
84
+
85
+