rigonsallauka
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
-
-
|
5 |
language:
|
6 |
- pt
|
7 |
metrics:
|
@@ -11,8 +11,7 @@ metrics:
|
|
11 |
- confusion_matrix
|
12 |
base_model:
|
13 |
- google-bert/bert-base-cased
|
14 |
-
pipeline_tag:
|
15 |
-
token-classification
|
16 |
tags:
|
17 |
- NER
|
18 |
- medical
|
@@ -68,7 +67,7 @@ You can easily use this model with the Hugging Face `transformers` library. Here
|
|
68 |
```python
|
69 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
70 |
|
71 |
-
model_name = "
|
72 |
|
73 |
# Load the tokenizer and model
|
74 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
+
- HUMADEX/portugese_ner_dataset
|
5 |
language:
|
6 |
- pt
|
7 |
metrics:
|
|
|
11 |
- confusion_matrix
|
12 |
base_model:
|
13 |
- google-bert/bert-base-cased
|
14 |
+
pipeline_tag: token-classification
|
|
|
15 |
tags:
|
16 |
- NER
|
17 |
- medical
|
|
|
67 |
```python
|
68 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
69 |
|
70 |
+
model_name = "HUMADEX/portugese_medical_ner"
|
71 |
|
72 |
# Load the tokenizer and model
|
73 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|