--- license: apache-2.0 --- [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana). ## ViT model HPU configuration This model only contains the `GaudiConfig` file for running the [ViT](https://huggingface.co/google/vit-base-patch16-224-in21k) model on Habana's Gaudi processors (HPU). **This model contains no model weights, only a GaudiConfig.** This enables to specify: - `use_habana_mixed_precision`: whether to use Habana Mixed Precision (HMP) - `hmp_opt_level`: optimization level for HMP, see [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Mixed_Precision/PT_Mixed_Precision.html#configuration-options) for a detailed explanation - `hmp_bf16_ops`: list of operators that should run in bf16 - `hmp_fp32_ops`: list of operators that should run in fp32 - `hmp_is_verbose`: verbosity - `use_fused_adam`: whether to use Habana's custom AdamW implementation - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator ## Usage The model is instantiated the same way as in the Transformers library. The only difference is that there are a few new training arguments specific to HPUs. [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/image-classification/run_image_classification.py) is an image classification example script to fine-tune a model. You can run it with ViT with the following command: ```bash python run_image_classification.py \ --model_name_or_path google/vit-base-patch16-224-in21k \ --dataset_name cifar10 \ --output_dir /tmp/outputs/ \ --remove_unused_columns False \ --do_train \ --do_eval \ --learning_rate 2e-5 \ --num_train_epochs 5 \ --per_device_train_batch_size 64 \ --per_device_eval_batch_size 64 \ --evaluation_strategy epoch \ --save_strategy epoch \ --load_best_model_at_end True \ --save_total_limit 3 \ --seed 1337 \ --use_habana \ --use_lazy_mode \ --gaudi_config_name Habana/vit \ --throughput_warmup_steps 2 ``` Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.