regisss HF staff commited on
Commit
5790eac
1 Parent(s): 193712d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md CHANGED
@@ -1,3 +1,54 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Transformers library and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading and fine-tuning on single- and multi-HPU settings for different downstream tasks.
6
+ Learn more about how to take advantage of the power of Habana HPUs to train Transformers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
7
+
8
+ ## Wav2Vec2 model HPU configuration
9
+
10
+ This model only contains the `GaudiConfig` file for running the [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) model on Habana's Gaudi processors (HPU).
11
+
12
+ **This model contains no model weights, only a GaudiConfig.**
13
+
14
+ This enables to specify:
15
+ - `use_habana_mixed_precision`: whether to use Habana Mixed Precision (HMP)
16
+ - `hmp_opt_level`: optimization level for HMP, see [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Mixed_Precision/PT_Mixed_Precision.html#configuration-options) for a detailed explanation
17
+ - `hmp_bf16_ops`: list of operators that should run in bf16
18
+ - `hmp_fp32_ops`: list of operators that should run in fp32
19
+ - `hmp_is_verbose`: verbosity
20
+ - `use_fused_adam`: whether to use Habana's custom AdamW implementation
21
+ - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
22
+
23
+ ## Usage
24
+
25
+ The model is instantiated the same way as in the Transformers library.
26
+ The only difference is that there are a few new training arguments specific to HPUs.
27
+
28
+ [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/audio-classification/run_audio_classification.py) is an audio classification example script to fine-tune a model. You can run it with Wav2Vec2 with the following command:
29
+ ```bash
30
+ python run_audio_classification.py \
31
+ --model_name_or_path facebook/wav2vec2-base \
32
+ --dataset_name superb \
33
+ --dataset_config_name ks \
34
+ --output_dir /tmp/wav2vec2-base-ft-keyword-spotting \
35
+ --overwrite_output_dir \
36
+ --remove_unused_columns False \
37
+ --do_train \
38
+ --do_eval \
39
+ --learning_rate 3e-5 \
40
+ --max_length_seconds 1 \
41
+ --attention_mask False \
42
+ --warmup_ratio 0.1 \
43
+ --num_train_epochs 5 \
44
+ --per_device_train_batch_size 256 \
45
+ --per_device_eval_batch_size 256 \
46
+ --dataloader_num_workers 4 \
47
+ --seed 27 \
48
+ --use_habana \
49
+ --use_lazy_mode \
50
+ --gaudi_config_name Habana/wav2vec2 \
51
+ --throughput_warmup_steps 2
52
+ ```
53
+
54
+ Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.