--- license: apache-2.0 --- [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana). ## Whisper model HPU configuration This model only contains the `GaudiConfig` file for running the [Whisper](https://huggingface.co/openai/whisper-small) model on Habana's Gaudi processors (HPU). **This model contains no model weights, only a GaudiConfig.** This enables to specify: - `use_fused_adam`: whether to use Habana's custom AdamW implementation - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator - `use_torch_autocast`: whether to use Torch Autocast for managing mixed precision ## Usage The model is instantiated the same way as in the Transformers library. The only difference is that there are a few new training arguments specific to HPUs.\ It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy. [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/speech-recognition/run_speech_recognition_seq2seq.py) is a sequence-to-sequence speech recognition example script to fine-tune a model. You can run it with Whisper with the following command: ```bash python run_speech_recognition_seq2seq.py \ --model_name_or_path="openai/whisper-small" \ --dataset_name="mozilla-foundation/common_voice_11_0" \ --dataset_config_name="hi" \ --language="hindi" \ --train_split_name="train+validation" \ --eval_split_name="test" \ --gaudi_config_name="Habana/whisper" \ --max_steps="5000" \ --output_dir="/tmp/whisper-small-hi" \ --per_device_train_batch_size="48" \ --per_device_eval_batch_size="2" \ --logging_steps="25" \ --learning_rate="1e-5" \ --warmup_steps="500" \ --evaluation_strategy="steps" \ --eval_steps="1000" \ --save_strategy="steps" \ --save_steps="1000" \ --generation_max_length="225" \ --preprocessing_num_workers="1" \ --length_column_name="input_length" \ --max_duration_in_seconds="30" \ --text_column_name="sentence" \ --freeze_feature_encoder="False" \ --group_by_length \ --bf16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --predict_with_generate \ --use_habana \ --use_hpu_graphs_for_inference \ --label_features_max_length 128 \ --dataloader_num_workers 8 \ --throughput_warmup_steps 3 ``` Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.