File size: 1,131 Bytes
7f82313 fb68322 7f82313 fb68322 7f82313 fb68322 5447779 fa69247 5447779 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
library_name: transformers
tags:
- time series
- embedding
license: mit
---
# MOMENT-1-large-embedding-v0.1
<!-- Provide a quick summary of what the model is/does. -->
This is an embedding model derived from [AutonLab/MOMENT-1-large](https://huggingface.co/AutonLab/MOMENT-1-large)
## How to use
```Python
from transformers import AutoConfig, AutoModel, AutoFeatureExtractor
model_name = "HachiML/MOMENT-1-large-embedding-v0.1"
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name, trust_remote_code=True)
```
```Python
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
model.to(device)
```
```Python
hist_ndaq = pd.DataFrame("nasdaq_price_history.csv")
input_data = hist_ndaq[["Open", "High", "Low", "Close", "Volume"]].iloc[:512]
inputs = feature_extractor(input_data, return_tensors="pt")
# inputs = feature_extractor([input_data, input_data_2], return_tensors="pt") # You can also pass multiple data in a list.
inputs = inputs.to(device)
outputs = model(**inputs)
print(outputs.embeddings)
``` |