File size: 21,521 Bytes
13df84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# Auton LabによるMomentライブラリをTransformers向けに書き換えたものです。
# Embeddingに特化したアーキテクチャとなっています。
# refers: https://github.com/moment-timeseries-foundation-model/moment

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import math
import numpy.typing as npt
import torch
from torch import nn

from transformers import PreTrainedModel
from transformers import T5Config, T5Model
from transformers.utils import logging

from .configuration_moment import MomentConfig

logger = logging.get_logger(__name__)

@dataclass
class TimeseriesOutputs:
    # forecast: npt.NDArray = None
    # anomaly_scores: npt.NDArray = None
    logits: npt.NDArray = None
    labels: int = None
    input_mask: npt.NDArray = None
    pretrain_mask: npt.NDArray = None
    # reconstruction: npt.NDArray = None
    embeddings: npt.NDArray = None
    metadata: dict = None
    illegal_output: bool = False
    hidden_states: npt.NDArray = None  # For Mists model
    input_mask_patch_view: npt.NDArray = None  # For Mists model


# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/utils/masking.py#L6C1-L6C2
class Masking:
    def __init__(
        self, mask_ratio: float = 0.3, patch_len: int = 8, stride: Optional[int] = None
    ):
        """
        Indices with 0 mask are hidden, and with 1 are observed.
        """
        self.mask_ratio = mask_ratio
        self.patch_len = patch_len
        self.stride = patch_len if stride is None else stride

    @staticmethod
    def convert_seq_to_patch_view(
        mask: torch.Tensor, patch_len: int = 8, stride: Optional[int] = None
    ):
        """
        Input:
            mask : torch.Tensor of shape [batch_size x seq_len]
        Output
            mask : torch.Tensor of shape [batch_size x n_patches]
        """
        stride = patch_len if stride is None else stride
        mask = mask.unfold(dimension=-1, size=patch_len, step=stride)
        # mask : [batch_size x n_patches x patch_len]
        return (mask.sum(dim=-1) == patch_len).long()

    @staticmethod
    def convert_patch_to_seq_view(
        mask: torch.Tensor,
        patch_len: int = 8,
    ):
        """
        Input:
            mask : torch.Tensor of shape [batch_size x n_patches]
        Output:
            mask : torch.Tensor of shape [batch_size x seq_len]
        """
        return mask.repeat_interleave(patch_len, dim=-1)

    def generate_mask(self, x: torch.Tensor, input_mask: Optional[torch.Tensor] = None):
        """
        Input:
            x : torch.Tensor of shape
            [batch_size x n_channels x n_patches x patch_len] or
            [batch_size x n_channels x seq_len]
            input_mask: torch.Tensor of shape [batch_size x seq_len] or
            [batch_size x n_patches]
        Output:
            mask : torch.Tensor of shape [batch_size x seq_len]
        """
        if x.ndim == 4:
            return self._mask_patch_view(x, input_mask=input_mask)
        elif x.ndim == 3:
            return self._mask_seq_view(x, input_mask=input_mask)

    def _mask_patch_view(self, x, input_mask=None):
        """
        Input:
            x : torch.Tensor of shape
            [batch_size x n_channels x n_patches x patch_len]
            input_mask: torch.Tensor of shape [batch_size x seq_len]
        Output:
            mask : torch.Tensor of shape [batch_size x n_patches]
        """
        input_mask = self.convert_seq_to_patch_view(
            input_mask, self.patch_len, self.stride
        )
        n_observed_patches = input_mask.sum(dim=-1, keepdim=True)  # batch_size x 1

        batch_size, _, n_patches, _ = x.shape
        len_keep = torch.ceil(n_observed_patches * (1 - self.mask_ratio)).long()
        noise = torch.rand(
            batch_size, n_patches, device=x.device
        )  # noise in [0, 1], batch_size x n_channels x n_patches
        noise = torch.where(
            input_mask == 1, noise, torch.ones_like(noise)
        )  # only keep the noise of observed patches

        # Sort noise for each sample
        ids_shuffle = torch.argsort(
            noise, dim=1
        )  # Ascend: small is keep, large is remove
        ids_restore = torch.argsort(
            ids_shuffle, dim=1
        )  # ids_restore: [batch_size x n_patches]

        # Generate the binary mask: 0 is keep, 1 is remove
        mask = torch.zeros(
            [batch_size, n_patches], device=x.device
        )  # mask: [batch_size x n_patches]
        for i in range(batch_size):
            mask[i, : len_keep[i]] = 1

        # Unshuffle to get the binary mask
        mask = torch.gather(mask, dim=1, index=ids_restore)

        return mask.long()

    def _mask_seq_view(self, x, input_mask=None):
        """
        Input:
            x : torch.Tensor of shape
            [batch_size x n_channels x seq_len]
            input_mask: torch.Tensor of shape [batch_size x seq_len]
        Output:
            mask : torch.Tensor of shape [batch_size x seq_len]
        """
        x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
        mask = self._mask_patch_view(x, input_mask=input_mask)
        return self.convert_patch_to_seq_view(mask, self.patch_len).long()


# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/revin.py#L5
def nanvar(tensor, dim=None, keepdim=False):
    tensor_mean = tensor.nanmean(dim=dim, keepdim=True)
    output = (tensor - tensor_mean).square().nanmean(dim=dim, keepdim=keepdim)
    return output

# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/revin.py#L11
def nanstd(tensor, dim=None, keepdim=False):
    output = nanvar(tensor, dim=dim, keepdim=keepdim)
    output = output.sqrt()
    return output

# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/revin.py#L17
class RevIN(nn.Module):
    def __init__(self, num_features: int, eps: float = 1e-5, affine: bool = False):
        """
        :param num_features: the number of features or channels
        :param eps: a value added for numerical stability
        :param affine: if True, RevIN has learnable affine parameters
        """
        super(RevIN, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.affine = affine

        if self.affine:
            self._init_params()

    def forward(self, x: torch.Tensor, mode: str = "norm", mask: torch.Tensor = None):
        """
        :param x: input tensor of shape (batch_size, n_channels, seq_len)
        :param mode: 'norm' or 'denorm'
        :param mask: input mask of shape (batch_size, seq_len)
        :return: RevIN transformed tensor
        """
        if mode == "norm":
            self._get_statistics(x, mask=mask)
            x = self._normalize(x)
        elif mode == "denorm":
            x = self._denormalize(x)
        else:
            raise NotImplementedError
        return x

    def _init_params(self):
        # initialize RevIN params: (C,)
        self.affine_weight = nn.Parameter(torch.ones(1, self.num_features, 1))
        self.affine_bias = nn.Parameter(torch.zeros(1, self.num_features, 1))

    def _get_statistics(self, x, mask=None):
        """
        x    : batch_size x n_channels x seq_len
        mask : batch_size x seq_len
        """
        if mask is None:
            mask = torch.ones((x.shape[0], x.shape[-1]))
        n_channels = x.shape[1]
        mask = mask.unsqueeze(1).repeat(1, n_channels, 1).bool()
        # Set masked positions to NaN, and unmasked positions are taken from x
        masked_x = torch.where(mask, x, torch.nan)
        self.mean = torch.nanmean(masked_x, dim=-1, keepdim=True).detach()
        self.stdev = nanstd(masked_x, dim=-1, keepdim=True).detach() + self.eps
        # self.stdev = torch.sqrt(
        #     torch.var(masked_x, dim=-1, keepdim=True) + self.eps).get_data().detach()
        # NOTE: By default not bessel correction

    def _normalize(self, x):
        x = x - self.mean
        x = x / self.stdev

        if self.affine:
            x = x * self.affine_weight
            x = x + self.affine_bias
        return x

    def _denormalize(self, x):
        if self.affine:
            x = x - self.affine_bias
            x = x / (self.affine_weight + self.eps * self.eps)
        x = x * self.stdev
        x = x + self.mean
        return x


# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/embed.py#L10
class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000, model_name="MOMENT"):
        super(PositionalEmbedding, self).__init__()
        self.model_name = model_name

        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (
            torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)
        ).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer("pe", pe)

    def forward(self, x):
        if (
            self.model_name == "MOMENT"
            or self.model_name == "TimesNet"
            or self.model_name == "GPT4TS"
        ):
            return self.pe[:, : x.size(2)]
        else:
            return self.pe[:, : x.size(1)]
        

# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/embed.py#L181
class PatchEmbedding(nn.Module):
    def __init__(
        self,
        d_model: int = 768,
        seq_len: int = 512,
        patch_len: int = 8,
        stride: int = 8,
        dropout: int = 0.1,
        add_positional_embedding: bool = False,
        value_embedding_bias: bool = False,
        orth_gain: float = 1.41,
    ):
        super(PatchEmbedding, self).__init__()
        self.patch_len = patch_len
        self.seq_len = seq_len
        self.stride = stride
        self.d_model = d_model
        self.add_positional_embedding = add_positional_embedding

        self.value_embedding = nn.Linear(patch_len, d_model, bias=value_embedding_bias)
        self.mask_embedding = nn.Parameter(torch.zeros(d_model))

        if orth_gain is not None:
            torch.nn.init.orthogonal_(self.value_embedding.weight, gain=orth_gain)
            if value_embedding_bias:
                self.value_embedding.bias.data.zero_()
            # torch.nn.init.orthogonal_(self.mask_embedding, gain=orth_gain) # Fails

        # Positional embedding
        if self.add_positional_embedding:
            self.position_embedding = PositionalEmbedding(d_model)

        # Residual dropout
        self.dropout = nn.Dropout(dropout)

    def forward(self, x: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
        mask = Masking.convert_seq_to_patch_view(
            mask, patch_len=self.patch_len
        ).unsqueeze(-1)
        # mask : [batch_size x n_patches x 1]
        n_channels = x.shape[1]
        mask = (
            mask.repeat_interleave(self.d_model, dim=-1)
            .unsqueeze(1)
            .repeat(1, n_channels, 1, 1)
        )
        # mask : [batch_size x n_channels x n_patches x d_model]

        # Input encoding
        x = mask * self.value_embedding(x) + (1 - mask) * self.mask_embedding
        if self.add_positional_embedding:
            x = x + self.position_embedding(x)

        return self.dropout(x)


# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/embed.py#L237C1-L251C17
class Patching(nn.Module):
    def __init__(self, patch_len: int, stride: int):
        super().__init__()
        self.patch_len = patch_len
        self.stride = stride
        if self.stride != self.patch_len:
            logger.warning(
                "Stride and patch length are not equal. "
                "This may lead to unexpected behavior."
            )

    def forward(self, x):
        x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
        # x : [batch_size x n_channels x num_patch x patch_len]
        return x


class MomentPreTrainedModel(PreTrainedModel):
    config_class = MomentConfig

    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["T5Block"]
    _skip_keys_device_placement = ""
    
    # 本来のT5の_init_weightsはもっと詳細だが、事前学習の予定はないためここでは簡単にしている。
    # refers: https://github.com/huggingface/transformers/blob/517df566f572d90e6301df87870f651f0d1b1110/src/transformers/models/t5/modeling_t5.py#L810
    def _init_weights(self, module):
        std = self.config.t5_config["initializer_factor"]
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class MomentEmbeddingModel(MomentPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.seq_len = config.seq_len
        self.patch_len = config.patch_len
        self.patch_stride_len = config.patch_stride_len

        # TODO: normalizer, tokenizerはProcessor側に配置するべきか?
        # 現状の考え: 特にMomentから切り離す用途もない。
        #       Processor側では入力の512timestepsへの切り取り等、
        #       input validationとTensorへの切り替えを行うで良さそう。
        self.normalizer = RevIN(
            num_features=getattr(config, "revin_num_features", 1), eps=getattr(config, "revin_eps", 1e-5), affine=getattr(config, "revin_affine", False)
        )
        self.tokenizer = Patching(
            patch_len=config.patch_len, stride=config.patch_stride_len
        )
        # モデル構成
        self.patch_embedding = PatchEmbedding(
            d_model=config.d_model,
            seq_len=config.seq_len,
            patch_len=config.patch_len,
            stride=config.patch_stride_len,
            dropout=getattr(config, "dropout", 0.1),
            add_positional_embedding=getattr(config, "add_positional_embedding", True),
            value_embedding_bias=getattr(config, "value_embedding_bias", False),
            orth_gain=getattr(config, "orth_gain", 1.41),
        )
        self.mask_generator = Masking(mask_ratio=getattr(config, "mask_ratio", 0.0))
        self.encoder = self._get_t5_encoder(config.t5_config, config.enable_gradient_checkpointing)
        self.head = nn.Identity()

        # Frozen parameters
        self.freeze_embedder = getattr(config, "freeze_embedder", True)
        self.freeze_encoder = getattr(config, "freeze_encoder", True)
        self.freeze_head = getattr(config, "freeze_head", False)

        if self.freeze_embedder:
            self.patch_embedding = freeze_parameters(self.patch_embedding)
        if self.freeze_encoder:
            self.encoder = freeze_parameters(self.encoder)
        if self.freeze_head:
            self.head = freeze_parameters(self.head)

    def _get_t5_encoder(self, config: dict, enable_gradient_checkpointing: bool) -> nn.Module:
        # random initialize
        # Momentでは(言語で)事前学習済みのモデルを取得することもできるようになっている
        # refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/moment.py#L205
        t5_config = T5Config.from_dict(config)
        t5_model = T5Model(t5_config)
        t5_model_encoder = t5_model.get_encoder()

        if enable_gradient_checkpointing:
            t5_model_encoder.gradient_checkpointing_enable()
            logger.info("Enabling gradient checkpointing.")

        return t5_model_encoder

    def embed(
        self,
        x_enc: torch.Tensor,
        input_mask: torch.Tensor = None,
        reduction: str = "mean",
        **kwargs,
    ) -> TimeseriesOutputs:
        batch_size, n_channels, seq_len = x_enc.shape

        if input_mask is None:
            input_mask = torch.ones((batch_size, seq_len)).to(x_enc.device)

        x_enc = self.normalizer(x=x_enc, mask=input_mask, mode="norm")
        x_enc = torch.nan_to_num(x_enc, nan=0, posinf=0, neginf=0)

        # [batch_size x n_patches]
        input_mask_patch_view = Masking.convert_seq_to_patch_view(
            input_mask, self.patch_len
        )

        x_enc = self.tokenizer(x=x_enc)
        enc_in = self.patch_embedding(x_enc, mask=input_mask)

        n_patches = enc_in.shape[2]
        enc_in = enc_in.reshape(
            (batch_size * n_channels, n_patches, self.config.d_model)
        )

        patch_view_mask = Masking.convert_seq_to_patch_view(input_mask, self.patch_len)
        attention_mask = patch_view_mask.repeat_interleave(n_channels, dim=0)
        outputs = self.encoder(inputs_embeds=enc_in, attention_mask=attention_mask)
        enc_out = outputs.last_hidden_state
        hidden_states = outputs.last_hidden_state  # hidden_statesを取得

        enc_out = enc_out.reshape((-1, n_channels, n_patches, self.config.d_model))
        # [batch_size x n_channels x n_patches x d_model]

        if reduction == "mean":
            enc_out = enc_out.mean(dim=1, keepdim=False)  # Mean across channels
            # [batch_size x n_patches x d_model]
            input_mask_patch_view = input_mask_patch_view.unsqueeze(-1).repeat(
                1, 1, self.config.d_model
            )
            enc_out = (input_mask_patch_view * enc_out).sum(
                dim=1
            ) / input_mask_patch_view.sum(dim=1)
        else:
            raise NotImplementedError(f"Reduction method {reduction} not implemented.")
        
        # For Mists model
        # [batch_size, n_channels x n_patches, d_model]
        # Ensure hidden_states are consistent for both short and long inputs with input_mask specified
        # hidden_states = hidden_states.reshape(batch_size, n_channels, n_patches, self.config.d_model).transpose(1, 2).reshape(batch_size, -1, self.config.d_model)
        # [batch_size x n_patches]
        input_mask_patch_view_for_hidden_states = Masking.convert_seq_to_patch_view(input_mask, self.patch_len)
        # [batch_size x n_channels x n_patches x d_model]
        input_mask_patch_view_for_hidden_states = input_mask_patch_view_for_hidden_states.unsqueeze(1).unsqueeze(-1).repeat(
            1, n_channels, 1, self.config.d_model
        )
        # [batch_size x n_channels x n_patches x d_model]
        hidden_states = hidden_states.reshape(batch_size, n_channels, n_patches, self.config.d_model)
        hidden_states = input_mask_patch_view_for_hidden_states * hidden_states
        # [batch_size, n_channels x n_patches, d_model]
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.config.d_model)
        
        # [batch_size x n_patches]
        input_mask_patch_view_for_mists = Masking.convert_seq_to_patch_view(input_mask, self.patch_len)
        # [batch_size, n_channels x n_patches]
        input_mask_patch_view_for_mists = input_mask_patch_view_for_mists.repeat_interleave(n_channels, dim=1)

        return TimeseriesOutputs(
            embeddings=enc_out, input_mask=input_mask, metadata=reduction, hidden_states=hidden_states, input_mask_patch_view=input_mask_patch_view_for_mists
        )
    
    def forward(
        self,
        time_series_values: torch.Tensor,
        # mask: torch.Tensor = None,
        input_mask: torch.Tensor = None,
        **kwargs,
    ) -> TimeseriesOutputs:
        if input_mask is None:
            input_mask = torch.ones_like(time_series_values[:, 0, :])

        return self.embed(x_enc=time_series_values, input_mask=input_mask, **kwargs)
    
    def calculate_n_patches(self, seq_len: int) -> int:
        """
        時系列の長さ(seq_len)を与えて、モデルのself.patch_lenとself.strideを使ってn_patchesを計算して返します。
        strideがNoneの場合はpatch_lenを使用します。

        Args:
            seq_len (int): 時系列の長さ

        Returns:
            int: 計算されたn_patchesの数
        """
        stride = self.patch_stride_len if self.patch_stride_len is not None else self.patch_len
        n_patches = (seq_len - self.patch_len) // stride + 1
        return n_patches


# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/moment.py#L601
def freeze_parameters(model):
    """
    Freeze parameters of the model
    """
    # Freeze the parameters
    for name, param in model.named_parameters():
        param.requires_grad = False

    return model