|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import math |
|
import numpy.typing as npt |
|
import torch |
|
from torch import nn |
|
|
|
from transformers import PreTrainedModel |
|
from transformers import T5Config, T5Model |
|
from transformers.utils import logging |
|
|
|
from .configuration_moment import MomentConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
@dataclass |
|
class TimeseriesOutputs: |
|
|
|
|
|
logits: npt.NDArray = None |
|
labels: int = None |
|
input_mask: npt.NDArray = None |
|
pretrain_mask: npt.NDArray = None |
|
|
|
embeddings: npt.NDArray = None |
|
metadata: dict = None |
|
illegal_output: bool = False |
|
hidden_states: npt.NDArray = None |
|
input_mask_patch_view: npt.NDArray = None |
|
|
|
|
|
|
|
class Masking: |
|
def __init__( |
|
self, mask_ratio: float = 0.3, patch_len: int = 8, stride: Optional[int] = None |
|
): |
|
""" |
|
Indices with 0 mask are hidden, and with 1 are observed. |
|
""" |
|
self.mask_ratio = mask_ratio |
|
self.patch_len = patch_len |
|
self.stride = patch_len if stride is None else stride |
|
|
|
@staticmethod |
|
def convert_seq_to_patch_view( |
|
mask: torch.Tensor, patch_len: int = 8, stride: Optional[int] = None |
|
): |
|
""" |
|
Input: |
|
mask : torch.Tensor of shape [batch_size x seq_len] |
|
Output |
|
mask : torch.Tensor of shape [batch_size x n_patches] |
|
""" |
|
stride = patch_len if stride is None else stride |
|
mask = mask.unfold(dimension=-1, size=patch_len, step=stride) |
|
|
|
return (mask.sum(dim=-1) == patch_len).long() |
|
|
|
@staticmethod |
|
def convert_patch_to_seq_view( |
|
mask: torch.Tensor, |
|
patch_len: int = 8, |
|
): |
|
""" |
|
Input: |
|
mask : torch.Tensor of shape [batch_size x n_patches] |
|
Output: |
|
mask : torch.Tensor of shape [batch_size x seq_len] |
|
""" |
|
return mask.repeat_interleave(patch_len, dim=-1) |
|
|
|
def generate_mask(self, x: torch.Tensor, input_mask: Optional[torch.Tensor] = None): |
|
""" |
|
Input: |
|
x : torch.Tensor of shape |
|
[batch_size x n_channels x n_patches x patch_len] or |
|
[batch_size x n_channels x seq_len] |
|
input_mask: torch.Tensor of shape [batch_size x seq_len] or |
|
[batch_size x n_patches] |
|
Output: |
|
mask : torch.Tensor of shape [batch_size x seq_len] |
|
""" |
|
if x.ndim == 4: |
|
return self._mask_patch_view(x, input_mask=input_mask) |
|
elif x.ndim == 3: |
|
return self._mask_seq_view(x, input_mask=input_mask) |
|
|
|
def _mask_patch_view(self, x, input_mask=None): |
|
""" |
|
Input: |
|
x : torch.Tensor of shape |
|
[batch_size x n_channels x n_patches x patch_len] |
|
input_mask: torch.Tensor of shape [batch_size x seq_len] |
|
Output: |
|
mask : torch.Tensor of shape [batch_size x n_patches] |
|
""" |
|
input_mask = self.convert_seq_to_patch_view( |
|
input_mask, self.patch_len, self.stride |
|
) |
|
n_observed_patches = input_mask.sum(dim=-1, keepdim=True) |
|
|
|
batch_size, _, n_patches, _ = x.shape |
|
len_keep = torch.ceil(n_observed_patches * (1 - self.mask_ratio)).long() |
|
noise = torch.rand( |
|
batch_size, n_patches, device=x.device |
|
) |
|
noise = torch.where( |
|
input_mask == 1, noise, torch.ones_like(noise) |
|
) |
|
|
|
|
|
ids_shuffle = torch.argsort( |
|
noise, dim=1 |
|
) |
|
ids_restore = torch.argsort( |
|
ids_shuffle, dim=1 |
|
) |
|
|
|
|
|
mask = torch.zeros( |
|
[batch_size, n_patches], device=x.device |
|
) |
|
for i in range(batch_size): |
|
mask[i, : len_keep[i]] = 1 |
|
|
|
|
|
mask = torch.gather(mask, dim=1, index=ids_restore) |
|
|
|
return mask.long() |
|
|
|
def _mask_seq_view(self, x, input_mask=None): |
|
""" |
|
Input: |
|
x : torch.Tensor of shape |
|
[batch_size x n_channels x seq_len] |
|
input_mask: torch.Tensor of shape [batch_size x seq_len] |
|
Output: |
|
mask : torch.Tensor of shape [batch_size x seq_len] |
|
""" |
|
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride) |
|
mask = self._mask_patch_view(x, input_mask=input_mask) |
|
return self.convert_patch_to_seq_view(mask, self.patch_len).long() |
|
|
|
|
|
|
|
def nanvar(tensor, dim=None, keepdim=False): |
|
tensor_mean = tensor.nanmean(dim=dim, keepdim=True) |
|
output = (tensor - tensor_mean).square().nanmean(dim=dim, keepdim=keepdim) |
|
return output |
|
|
|
|
|
def nanstd(tensor, dim=None, keepdim=False): |
|
output = nanvar(tensor, dim=dim, keepdim=keepdim) |
|
output = output.sqrt() |
|
return output |
|
|
|
|
|
class RevIN(nn.Module): |
|
def __init__(self, num_features: int, eps: float = 1e-5, affine: bool = False): |
|
""" |
|
:param num_features: the number of features or channels |
|
:param eps: a value added for numerical stability |
|
:param affine: if True, RevIN has learnable affine parameters |
|
""" |
|
super(RevIN, self).__init__() |
|
self.num_features = num_features |
|
self.eps = eps |
|
self.affine = affine |
|
|
|
if self.affine: |
|
self._init_params() |
|
|
|
def forward(self, x: torch.Tensor, mode: str = "norm", mask: torch.Tensor = None): |
|
""" |
|
:param x: input tensor of shape (batch_size, n_channels, seq_len) |
|
:param mode: 'norm' or 'denorm' |
|
:param mask: input mask of shape (batch_size, seq_len) |
|
:return: RevIN transformed tensor |
|
""" |
|
if mode == "norm": |
|
self._get_statistics(x, mask=mask) |
|
x = self._normalize(x) |
|
elif mode == "denorm": |
|
x = self._denormalize(x) |
|
else: |
|
raise NotImplementedError |
|
return x |
|
|
|
def _init_params(self): |
|
|
|
self.affine_weight = nn.Parameter(torch.ones(1, self.num_features, 1)) |
|
self.affine_bias = nn.Parameter(torch.zeros(1, self.num_features, 1)) |
|
|
|
def _get_statistics(self, x, mask=None): |
|
""" |
|
x : batch_size x n_channels x seq_len |
|
mask : batch_size x seq_len |
|
""" |
|
if mask is None: |
|
mask = torch.ones((x.shape[0], x.shape[-1])) |
|
n_channels = x.shape[1] |
|
mask = mask.unsqueeze(1).repeat(1, n_channels, 1).bool() |
|
|
|
masked_x = torch.where(mask, x, torch.nan) |
|
self.mean = torch.nanmean(masked_x, dim=-1, keepdim=True).detach() |
|
self.stdev = nanstd(masked_x, dim=-1, keepdim=True).detach() + self.eps |
|
|
|
|
|
|
|
|
|
def _normalize(self, x): |
|
x = x - self.mean |
|
x = x / self.stdev |
|
|
|
if self.affine: |
|
x = x * self.affine_weight |
|
x = x + self.affine_bias |
|
return x |
|
|
|
def _denormalize(self, x): |
|
if self.affine: |
|
x = x - self.affine_bias |
|
x = x / (self.affine_weight + self.eps * self.eps) |
|
x = x * self.stdev |
|
x = x + self.mean |
|
return x |
|
|
|
|
|
|
|
class PositionalEmbedding(nn.Module): |
|
def __init__(self, d_model, max_len=5000, model_name="MOMENT"): |
|
super(PositionalEmbedding, self).__init__() |
|
self.model_name = model_name |
|
|
|
|
|
pe = torch.zeros(max_len, d_model).float() |
|
pe.require_grad = False |
|
|
|
position = torch.arange(0, max_len).float().unsqueeze(1) |
|
div_term = ( |
|
torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model) |
|
).exp() |
|
|
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
|
|
pe = pe.unsqueeze(0) |
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x): |
|
if ( |
|
self.model_name == "MOMENT" |
|
or self.model_name == "TimesNet" |
|
or self.model_name == "GPT4TS" |
|
): |
|
return self.pe[:, : x.size(2)] |
|
else: |
|
return self.pe[:, : x.size(1)] |
|
|
|
|
|
|
|
class PatchEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int = 768, |
|
seq_len: int = 512, |
|
patch_len: int = 8, |
|
stride: int = 8, |
|
dropout: int = 0.1, |
|
add_positional_embedding: bool = False, |
|
value_embedding_bias: bool = False, |
|
orth_gain: float = 1.41, |
|
): |
|
super(PatchEmbedding, self).__init__() |
|
self.patch_len = patch_len |
|
self.seq_len = seq_len |
|
self.stride = stride |
|
self.d_model = d_model |
|
self.add_positional_embedding = add_positional_embedding |
|
|
|
self.value_embedding = nn.Linear(patch_len, d_model, bias=value_embedding_bias) |
|
self.mask_embedding = nn.Parameter(torch.zeros(d_model)) |
|
|
|
if orth_gain is not None: |
|
torch.nn.init.orthogonal_(self.value_embedding.weight, gain=orth_gain) |
|
if value_embedding_bias: |
|
self.value_embedding.bias.data.zero_() |
|
|
|
|
|
|
|
if self.add_positional_embedding: |
|
self.position_embedding = PositionalEmbedding(d_model) |
|
|
|
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor: |
|
mask = Masking.convert_seq_to_patch_view( |
|
mask, patch_len=self.patch_len |
|
).unsqueeze(-1) |
|
|
|
n_channels = x.shape[1] |
|
mask = ( |
|
mask.repeat_interleave(self.d_model, dim=-1) |
|
.unsqueeze(1) |
|
.repeat(1, n_channels, 1, 1) |
|
) |
|
|
|
|
|
|
|
x = mask * self.value_embedding(x) + (1 - mask) * self.mask_embedding |
|
if self.add_positional_embedding: |
|
x = x + self.position_embedding(x) |
|
|
|
return self.dropout(x) |
|
|
|
|
|
|
|
class Patching(nn.Module): |
|
def __init__(self, patch_len: int, stride: int): |
|
super().__init__() |
|
self.patch_len = patch_len |
|
self.stride = stride |
|
if self.stride != self.patch_len: |
|
logger.warning( |
|
"Stride and patch length are not equal. " |
|
"This may lead to unexpected behavior." |
|
) |
|
|
|
def forward(self, x): |
|
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride) |
|
|
|
return x |
|
|
|
|
|
class MomentPreTrainedModel(PreTrainedModel): |
|
config_class = MomentConfig |
|
|
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["T5Block"] |
|
_skip_keys_device_placement = "" |
|
|
|
|
|
|
|
def _init_weights(self, module): |
|
std = self.config.t5_config["initializer_factor"] |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class MomentEmbeddingModel(MomentPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.seq_len = config.seq_len |
|
self.patch_len = config.patch_len |
|
self.patch_stride_len = config.patch_stride_len |
|
|
|
|
|
|
|
|
|
|
|
self.normalizer = RevIN( |
|
num_features=getattr(config, "revin_num_features", 1), eps=getattr(config, "revin_eps", 1e-5), affine=getattr(config, "revin_affine", False) |
|
) |
|
self.tokenizer = Patching( |
|
patch_len=config.patch_len, stride=config.patch_stride_len |
|
) |
|
|
|
self.patch_embedding = PatchEmbedding( |
|
d_model=config.d_model, |
|
seq_len=config.seq_len, |
|
patch_len=config.patch_len, |
|
stride=config.patch_stride_len, |
|
dropout=getattr(config, "dropout", 0.1), |
|
add_positional_embedding=getattr(config, "add_positional_embedding", True), |
|
value_embedding_bias=getattr(config, "value_embedding_bias", False), |
|
orth_gain=getattr(config, "orth_gain", 1.41), |
|
) |
|
self.mask_generator = Masking(mask_ratio=getattr(config, "mask_ratio", 0.0)) |
|
self.encoder = self._get_t5_encoder(config.t5_config, config.enable_gradient_checkpointing) |
|
self.head = nn.Identity() |
|
|
|
|
|
self.freeze_embedder = getattr(config, "freeze_embedder", True) |
|
self.freeze_encoder = getattr(config, "freeze_encoder", True) |
|
self.freeze_head = getattr(config, "freeze_head", False) |
|
|
|
if self.freeze_embedder: |
|
self.patch_embedding = freeze_parameters(self.patch_embedding) |
|
if self.freeze_encoder: |
|
self.encoder = freeze_parameters(self.encoder) |
|
if self.freeze_head: |
|
self.head = freeze_parameters(self.head) |
|
|
|
def _get_t5_encoder(self, config: dict, enable_gradient_checkpointing: bool) -> nn.Module: |
|
|
|
|
|
|
|
t5_config = T5Config.from_dict(config) |
|
t5_model = T5Model(t5_config) |
|
t5_model_encoder = t5_model.get_encoder() |
|
|
|
if enable_gradient_checkpointing: |
|
t5_model_encoder.gradient_checkpointing_enable() |
|
logger.info("Enabling gradient checkpointing.") |
|
|
|
return t5_model_encoder |
|
|
|
def embed( |
|
self, |
|
x_enc: torch.Tensor, |
|
input_mask: torch.Tensor = None, |
|
reduction: str = "mean", |
|
**kwargs, |
|
) -> TimeseriesOutputs: |
|
batch_size, n_channels, seq_len = x_enc.shape |
|
|
|
if input_mask is None: |
|
input_mask = torch.ones((batch_size, seq_len)).to(x_enc.device) |
|
|
|
x_enc = self.normalizer(x=x_enc, mask=input_mask, mode="norm") |
|
x_enc = torch.nan_to_num(x_enc, nan=0, posinf=0, neginf=0) |
|
|
|
|
|
input_mask_patch_view = Masking.convert_seq_to_patch_view( |
|
input_mask, self.patch_len |
|
) |
|
|
|
x_enc = self.tokenizer(x=x_enc) |
|
enc_in = self.patch_embedding(x_enc, mask=input_mask) |
|
|
|
n_patches = enc_in.shape[2] |
|
enc_in = enc_in.reshape( |
|
(batch_size * n_channels, n_patches, self.config.d_model) |
|
) |
|
|
|
patch_view_mask = Masking.convert_seq_to_patch_view(input_mask, self.patch_len) |
|
attention_mask = patch_view_mask.repeat_interleave(n_channels, dim=0) |
|
outputs = self.encoder(inputs_embeds=enc_in, attention_mask=attention_mask) |
|
enc_out = outputs.last_hidden_state |
|
hidden_states = outputs.last_hidden_state |
|
|
|
enc_out = enc_out.reshape((-1, n_channels, n_patches, self.config.d_model)) |
|
|
|
|
|
if reduction == "mean": |
|
enc_out = enc_out.mean(dim=1, keepdim=False) |
|
|
|
input_mask_patch_view = input_mask_patch_view.unsqueeze(-1).repeat( |
|
1, 1, self.config.d_model |
|
) |
|
enc_out = (input_mask_patch_view * enc_out).sum( |
|
dim=1 |
|
) / input_mask_patch_view.sum(dim=1) |
|
else: |
|
raise NotImplementedError(f"Reduction method {reduction} not implemented.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
input_mask_patch_view_for_hidden_states = Masking.convert_seq_to_patch_view(input_mask, self.patch_len) |
|
|
|
input_mask_patch_view_for_hidden_states = input_mask_patch_view_for_hidden_states.unsqueeze(1).unsqueeze(-1).repeat( |
|
1, n_channels, 1, self.config.d_model |
|
) |
|
|
|
hidden_states = hidden_states.reshape(batch_size, n_channels, n_patches, self.config.d_model) |
|
hidden_states = input_mask_patch_view_for_hidden_states * hidden_states |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.config.d_model) |
|
|
|
|
|
input_mask_patch_view_for_mists = Masking.convert_seq_to_patch_view(input_mask, self.patch_len) |
|
|
|
input_mask_patch_view_for_mists = input_mask_patch_view_for_mists.repeat_interleave(n_channels, dim=1) |
|
|
|
return TimeseriesOutputs( |
|
embeddings=enc_out, input_mask=input_mask, metadata=reduction, hidden_states=hidden_states, input_mask_patch_view=input_mask_patch_view_for_mists |
|
) |
|
|
|
def forward( |
|
self, |
|
time_series_values: torch.Tensor, |
|
|
|
input_mask: torch.Tensor = None, |
|
**kwargs, |
|
) -> TimeseriesOutputs: |
|
if input_mask is None: |
|
input_mask = torch.ones_like(time_series_values[:, 0, :]) |
|
|
|
return self.embed(x_enc=time_series_values, input_mask=input_mask, **kwargs) |
|
|
|
def calculate_n_patches(self, seq_len: int) -> int: |
|
""" |
|
時系列の長さ(seq_len)を与えて、モデルのself.patch_lenとself.strideを使ってn_patchesを計算して返します。 |
|
strideがNoneの場合はpatch_lenを使用します。 |
|
|
|
Args: |
|
seq_len (int): 時系列の長さ |
|
|
|
Returns: |
|
int: 計算されたn_patchesの数 |
|
""" |
|
stride = self.patch_stride_len if self.patch_stride_len is not None else self.patch_len |
|
n_patches = (seq_len - self.patch_len) // stride + 1 |
|
return n_patches |
|
|
|
|
|
|
|
def freeze_parameters(model): |
|
""" |
|
Freeze parameters of the model |
|
""" |
|
|
|
for name, param in model.named_parameters(): |
|
param.requires_grad = False |
|
|
|
return model |