File size: 2,719 Bytes
286bb56 9396935 286bb56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
base_model: HachiML/Mists-7B-v01-not-trained
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Mists-7B-v01-simple-projector-trained
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/siseikatu8/huggingface/runs/eazfub66)
# Mists-7B-v01-simple-projector-trained
This model is a fine-tuned version of [HachiML/Mists-7B-v01-not-trained](https://huggingface.co/HachiML/Mists-7B-v01-not-trained) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0152
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3727 | 0.0444 | 100 | 0.0301 |
| 0.0274 | 0.0888 | 200 | 0.0243 |
| 0.0615 | 0.1332 | 300 | 0.0382 |
| 0.0367 | 0.1776 | 400 | 0.0325 |
| 0.0327 | 0.2220 | 500 | 0.0304 |
| 0.0304 | 0.2664 | 600 | 0.0243 |
| 0.0242 | 0.3108 | 700 | 0.0216 |
| 0.0236 | 0.3552 | 800 | 0.0214 |
| 0.0226 | 0.3996 | 900 | 0.0188 |
| 0.0206 | 0.4440 | 1000 | 0.0181 |
| 0.0197 | 0.4885 | 1100 | 0.0188 |
| 0.0192 | 0.5329 | 1200 | 0.0175 |
| 0.019 | 0.5773 | 1300 | 0.0171 |
| 0.018 | 0.6217 | 1400 | 0.0166 |
| 0.0173 | 0.6661 | 1500 | 0.0169 |
| 0.017 | 0.7105 | 1600 | 0.0163 |
| 0.0172 | 0.7549 | 1700 | 0.0164 |
| 0.0186 | 0.7993 | 1800 | 0.0161 |
| 0.0168 | 0.8437 | 1900 | 0.0167 |
| 0.0161 | 0.8881 | 2000 | 0.0163 |
| 0.0157 | 0.9325 | 2100 | 0.0156 |
| 0.016 | 0.9769 | 2200 | 0.0152 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|