File size: 2,719 Bytes
286bb56
 
9396935
286bb56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: HachiML/Mists-7B-v01-not-trained
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Mists-7B-v01-simple-projector-trained
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/siseikatu8/huggingface/runs/eazfub66)
# Mists-7B-v01-simple-projector-trained

This model is a fine-tuned version of [HachiML/Mists-7B-v01-not-trained](https://huggingface.co/HachiML/Mists-7B-v01-not-trained) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0152

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3727        | 0.0444 | 100  | 0.0301          |
| 0.0274        | 0.0888 | 200  | 0.0243          |
| 0.0615        | 0.1332 | 300  | 0.0382          |
| 0.0367        | 0.1776 | 400  | 0.0325          |
| 0.0327        | 0.2220 | 500  | 0.0304          |
| 0.0304        | 0.2664 | 600  | 0.0243          |
| 0.0242        | 0.3108 | 700  | 0.0216          |
| 0.0236        | 0.3552 | 800  | 0.0214          |
| 0.0226        | 0.3996 | 900  | 0.0188          |
| 0.0206        | 0.4440 | 1000 | 0.0181          |
| 0.0197        | 0.4885 | 1100 | 0.0188          |
| 0.0192        | 0.5329 | 1200 | 0.0175          |
| 0.019         | 0.5773 | 1300 | 0.0171          |
| 0.018         | 0.6217 | 1400 | 0.0166          |
| 0.0173        | 0.6661 | 1500 | 0.0169          |
| 0.017         | 0.7105 | 1600 | 0.0163          |
| 0.0172        | 0.7549 | 1700 | 0.0164          |
| 0.0186        | 0.7993 | 1800 | 0.0161          |
| 0.0168        | 0.8437 | 1900 | 0.0167          |
| 0.0161        | 0.8881 | 2000 | 0.0163          |
| 0.0157        | 0.9325 | 2100 | 0.0156          |
| 0.016         | 0.9769 | 2200 | 0.0152          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1