import warnings from typing import Optional, Tuple from transformers.models.llama.modeling_llama import ( LlamaConfig, LlamaModel, LlamaForCausalLM, LlamaAttention, LlamaFlashAttention2, LlamaSdpaAttention, LlamaMLP, LlamaDecoderLayer, ) from mybitnet.bitnet import BitLinear import torch from torch import nn class BitLlamaConfig(LlamaConfig): model_type = "bit_llama" def __init__(self, bits=8, **kwargs): super().__init__(**kwargs) self.bits = bits class BitLlamaMLP(LlamaMLP): def __init__(self, config): super().__init__(config) self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=False) self.up_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=True) self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True) class BitLlamaAttention(LlamaAttention): def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None): super().__init__(config) self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True) self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True) self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True) self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True) class BitLlamaFlashAttention2(LlamaFlashAttention2): def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True) self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True) self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True) self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True) class BitLlamaSdpaAttention(LlamaSdpaAttention): def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True) self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True) self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True) self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True) BITLLAMA_ATTENTION_CLASSES = { "eager": BitLlamaAttention, "flash_attention_2": BitLlamaFlashAttention2, "sdpa": BitLlamaSdpaAttention, } class BitLlamaDecoderLayer(LlamaDecoderLayer): def __init__(self, config: BitLlamaConfig, layer_idx: int): super().__init__(config, layer_idx) self.self_attn = BITLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = BitLlamaMLP(config) del self.input_layernorm del self.post_attention_layernorm def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ refers: https://github.com/huggingface/transformers/blob/c5f0288bc7d76f65996586f79f69fba8867a0e67/src/transformers/models/llama/modeling_llama.py#L693 """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class BitLlamaModel(LlamaModel): config_class = BitLlamaConfig def __init__(self, config: BitLlamaConfig): super().__init__(config) self.layers = nn.ModuleList( [BitLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) class BitLlamaForCausalLM(LlamaForCausalLM): config_class = BitLlamaConfig def __init__(self, config: BitLlamaConfig): super().__init__(config) self.model = BitLlamaModel(config) self.lm_head = BitLinear(config.hidden_size, config.vocab_size, bias=False, bits=config.bits, flg_before_linear=True)