HackerMonica commited on
Commit
9ee9d47
1 Parent(s): 83ab0fc

write README.md refering to cifope/nllb-200-wo-fr-distilled-600M

Browse files
Files changed (1) hide show
  1. README.md +52 -3
README.md CHANGED
@@ -1,3 +1,52 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - en
5
+ - zh
6
+ metrics:
7
+ - bleu
8
+ pipeline_tag: translation
9
+ ---
10
+
11
+ # Model Documentation: English to Simplified Chinese Translation with NLLB-200-distilled-600M
12
+
13
+ ## Model Overview
14
+
15
+ This document describes a machine translation model fine-tuned from Meta's NLLB-200-distilled-600M for translating from English to Simplified Chinese. The model, hosted at `HackerMonica/nllb-200-distilled-600M-en-zh_CN`, utilizes a distilled version of the NLLB-200 model which has been specifically optimized for translation tasks between the English and Simplified Chinese languages.
16
+
17
+ ## Dependencies
18
+
19
+ The model requires the `transformers` library by Hugging Face. Ensure that you have the library installed:
20
+
21
+ ```bash
22
+ pip install transformers
23
+ ```
24
+
25
+ ## Setup
26
+
27
+ Import necessary classes from the `transformers` library:
28
+
29
+ ```python
30
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
31
+ ```
32
+
33
+ Initialize the model and tokenizer:
34
+
35
+ ```python
36
+ model = AutoModelForSeq2SeqLM.from_pretrained('HackerMonica/nllb-200-distilled-600M-en-zh_CN')
37
+ tokenizer = AutoTokenizer.from_pretrained('HackerMonica/nllb-200-distilled-600M-en-zh_CN')
38
+ ```
39
+
40
+ ## Usage
41
+
42
+ To use the model for translating text, use python code below to translate text from English to Simplified Chinese:
43
+
44
+ ```python
45
+ def translate(text):
46
+ inputs = tokenizer(text, return_tensors="pt").to("cuda")
47
+ translated_tokens = model.generate(
48
+ **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["zho_Hans"], max_length=300
49
+ )
50
+ translation = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
51
+ return translation
52
+ ```