File size: 1,528 Bytes
50b75e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e269ca
50b75e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e269ca
 
50b75e5
 
 
 
 
 
 
 
 
 
4e269ca
 
 
50b75e5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---

base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-imdb
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-imdb

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2260

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 16

- eval_batch_size: 16

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.4791        | 1.0   | 625  | 2.2769          |
| 2.3842        | 2.0   | 1250 | 2.2267          |
| 2.3412        | 3.0   | 1875 | 2.2260          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1