--- library_name: transformers language: - yo license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Harcuracy/whisper_bouesti_asr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: yo split: test args: yo metrics: - name: Wer type: wer value: 51.038251366120214 --- # Harcuracy/whisper_bouesti_asr This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7570 - Wer: 51.0383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4516 | 0.8711 | 250 | 0.7315 | 55.8806 | | 0.2582 | 1.7422 | 500 | 0.7210 | 51.2232 | | 0.1496 | 2.6132 | 750 | 0.7389 | 50.6852 | | 0.0913 | 3.4843 | 1000 | 0.7570 | 51.0383 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0