Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 215.15 +/- 49.08
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7b6139a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7b6139b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7b6139b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7b6139c20>", "_build": "<function ActorCriticPolicy._build at 0x7fb7b6139cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb7b6139d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7b6139dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb7b6139e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7b6139ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7b6139f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7b613d050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb7b6178cc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651685849.4142776, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2X2T32/FS6gR2ruxuKITjuklQ6gLWatgAAgD8AAIA/s3jjvVwLIroHHDUzHkPHr6zZ1zntsM2zAACAPwAAgD9A2qM9w90PunEWS7kL/I60oDfuugAibTgAAIA/AACAP/3tnj5/Ekw/dmuIPu/syr4vLy0+tiRNvQAAAAAAAAAAwBEwvnGZbzyeKuo6uwY9ual5Ab6iqoU4AACAPwAAgD8F4o2+HwX8OKvYlbsn07A81w0evuh3jj0AAAAAAACAP2qdVL5DgKo/TokUvy8Xrb4vaU6+RrdRvgAAAAAAAAAATUQZvVJ4ijhq6kk7ZXyQM0uDbTugAwSzAACAPwAAgD8Ki40+vdx0PGoXhLplRbW4F98BPsodnzkAAIA/AACAP1oQsz2FQ/65a0KFOwBpVzWmRDU5T4yZugAAgD8AAIA/kxhaPqSBHzxmz1k6lCtAOItqqz0Q4H+5AACAPwAAgD/ARcS9w5FGunICOTu16LM2dzOPOy1fVboAAIA/AACAP82Mhrtc4yu6ABcOOjOzATRzaUm7FjsjuQAAgD8AAIA/xcm6vtlStz6NfPE9d/5zvpgoM7yyMhK9AAAAAAAAAACmNcW9Qt0SP7BQJr3JrDq+5eqAvBaUdD0AAAAAAAAAAEAPvj2F84S5ksJTOglVzLRyqmG7JYF7uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6L6c2a5VXkCUhpRSlIwBbJRN6AOMAXSUR0CELcQwsXizdX2UKGgGaAloD0MIsi0DzlKtYkCUhpRSlGgVTegDaBZHQIQt5eb/ffp1fZQoaAZoCWgPQwgg71UrE8dbQJSGlFKUaBVN6ANoFkdAhDMOieumrXV9lChoBmgJaA9DCAUVVb/SFGNAlIaUUpRoFU3oA2gWR0CEM+rS3LFGdX2UKGgGaAloD0MIIc7DCUxvX0CUhpRSlGgVTegDaBZHQIQ1uhmGucN1fZQoaAZoCWgPQwj4qL9eYThaQJSGlFKUaBVN6ANoFkdAhEBuBDohZHV9lChoBmgJaA9DCFc+y/PgaFlAlIaUUpRoFU3oA2gWR0CEQHPv8ZUDdX2UKGgGaAloD0MI8uocA7LHKUCUhpRSlGgVTVMBaBZHQIRGBMYdhiN1fZQoaAZoCWgPQwiWQiCXOPdhQJSGlFKUaBVN6ANoFkdAhEeNxMnJDHV9lChoBmgJaA9DCCP3dHVHx2FAlIaUUpRoFU3oA2gWR0CETzHq/ub7dX2UKGgGaAloD0MI09wKYTW+LUCUhpRSlGgVTUQBaBZHQIRQZcPe54J1fZQoaAZoCWgPQwgvGFxzR1lTQJSGlFKUaBVN6ANoFkdAhFkG4AjptHV9lChoBmgJaA9DCIkHlE25FGBAlIaUUpRoFU3oA2gWR0CEXaHlfZ27dX2UKGgGaAloD0MIAtcVM8LNXkCUhpRSlGgVTegDaBZHQISDjeQ+2Vp1fZQoaAZoCWgPQwivJk9ZTVVgQJSGlFKUaBVN6ANoFkdAhJCeEZiuuHV9lChoBmgJaA9DCCb+KOrMql9AlIaUUpRoFU3oA2gWR0CEkjqi48U3dX2UKGgGaAloD0MIJxQi4BDrX0CUhpRSlGgVTegDaBZHQISiDSThYNl1fZQoaAZoCWgPQwgkfsUarrVkQJSGlFKUaBVN6ANoFkdAhK6eBpYcN3V9lChoBmgJaA9DCPhwyXGntFdAlIaUUpRoFU3oA2gWR0CEtZdyksSTdX2UKGgGaAloD0MIa/P/qiPtX0CUhpRSlGgVTegDaBZHQIS2r7Q9ic51fZQoaAZoCWgPQwi5Nem2RCxdQJSGlFKUaBVN6ANoFkdAhLkTrVvuPXV9lChoBmgJaA9DCBo1XyUfPVtAlIaUUpRoFU3oA2gWR0CExtASnLq2dX2UKGgGaAloD0MIE9OFWP2AW0CUhpRSlGgVTegDaBZHQITG1aKUFB91fZQoaAZoCWgPQwh+xRoucuFZQJSGlFKUaBVN6ANoFkdAhYt5eRgZ0nV9lChoBmgJaA9DCOS6KeW1KFFAlIaUUpRoFU3oA2gWR0CFjXp0wJw9dX2UKGgGaAloD0MIEfxvJTvzWkCUhpRSlGgVTegDaBZHQIWXGFBY3eh1fZQoaAZoCWgPQwhvnX+77GBaQJSGlFKUaBVN6ANoFkdAhZiAavRqoXV9lChoBmgJaA9DCJZ31QPmrT9AlIaUUpRoFU1AAWgWR0CFnmP5HmRvdX2UKGgGaAloD0MIritmhLewYUCUhpRSlGgVTegDaBZHQIWhzgdfb9J1fZQoaAZoCWgPQwjPnsvUJCxVQJSGlFKUaBVN6ANoFkdAhaazXjENv3V9lChoBmgJaA9DCMgljjyQbmFAlIaUUpRoFU3oA2gWR0CFzHjNIK+jdX2UKGgGaAloD0MIDK65o3+fZECUhpRSlGgVTegDaBZHQIXYcBXCCSR1fZQoaAZoCWgPQwhRMjm1M05hQJSGlFKUaBVN6ANoFkdAhdnzW5H3DnV9lChoBmgJaA9DCGZK628JEF1AlIaUUpRoFU3oA2gWR0CF59pRoAXEdX2UKGgGaAloD0MIKerMPSSKX0CUhpRSlGgVTegDaBZHQIXyyTdLxqh1fZQoaAZoCWgPQwiBlNi1vWVgQJSGlFKUaBVN6ANoFkdAhfhxceKba3V9lChoBmgJaA9DCAlszsEzT2BAlIaUUpRoFU3oA2gWR0CF+4BClabGdX2UKGgGaAloD0MIqtOBrKeCNkCUhpRSlGgVTR0BaBZHQIX+mhdt2s91fZQoaAZoCWgPQwiZ1TvcDjtfQJSGlFKUaBVN6ANoFkdAhgeeMZP2wnV9lChoBmgJaA9DCKt3uB0aBlhAlIaUUpRoFU3oA2gWR0CGB6cfeUILdX2UKGgGaAloD0MIhnZOs0A78r+UhpRSlGgVTTYBaBZHQIYNUvmHP/t1fZQoaAZoCWgPQwgCRwINNvhfQJSGlFKUaBVN6ANoFkdAhg2IESuhbnV9lChoBmgJaA9DCC2T4Xi+JmJAlIaUUpRoFU3oA2gWR0CGDvPAwfyPdX2UKGgGaAloD0MIPX5v05/oY0CUhpRSlGgVTegDaBZHQIYVqcoYvWZ1fZQoaAZoCWgPQwj8OQX52RBbQJSGlFKUaBVN6ANoFkdAhhbSvC/Gl3V9lChoBmgJaA9DCOJbWDfeBGVAlIaUUpRoFU3oA2gWR0CGG8cBltj1dX2UKGgGaAloD0MIt2EUBI81YUCUhpRSlGgVTegDaBZHQIYenHPu5SZ1fZQoaAZoCWgPQwhGtB1Td/BgQJSGlFKUaBVN6ANoFkdAhiMMfq5byHV9lChoBmgJaA9DCD6xTpXvoSjAlIaUUpRoFUv6aBZHQIYoarYGt6p1fZQoaAZoCWgPQwhRhNTt7ORaQJSGlFKUaBVN6ANoFkdAhkfnzxwyZnV9lChoBmgJaA9DCD/iV6zh+2BAlIaUUpRoFU3oA2gWR0CGVFSydFvydX2UKGgGaAloD0MI5bUSusvEZkCUhpRSlGgVTegDaBZHQIZyt1wHZ9N1fZQoaAZoCWgPQwiUS+MX3ihiQJSGlFKUaBVN6ANoFkdAhnlhGx2SuHV9lChoBmgJaA9DCCUhkbbx8l1AlIaUUpRoFU3oA2gWR0CGfO3Jgb6ydX2UKGgGaAloD0MIqcKf4c27WECUhpRSlGgVTegDaBZHQIaAPhQ3xWl1fZQoaAZoCWgPQwifdvhrMktgQJSGlFKUaBVN6ANoFkdAholYa5wwTXV9lChoBmgJaA9DCOsCXmbYMF1AlIaUUpRoFU3oA2gWR0CGiV8vVVghdX2UKGgGaAloD0MIJc0f01oXY0CUhpRSlGgVTegDaBZHQIaPbCcf/3p1fZQoaAZoCWgPQwgoui784GBYQJSGlFKUaBVN6ANoFkdAho+j0th/iHV9lChoBmgJaA9DCFGE1O3stWBAlIaUUpRoFU3oA2gWR0CHVgxagVXWdX2UKGgGaAloD0MIJSAm4cLcZECUhpRSlGgVTegDaBZHQIdXJMi8nNR1fZQoaAZoCWgPQwjUSba6nNhIwJSGlFKUaBVL/mgWR0CHVz5fMOf/dX2UKGgGaAloD0MIU5eMYyQ/YUCUhpRSlGgVTegDaBZHQIdbhAnlXBB1fZQoaAZoCWgPQwj8qlyo/HhlQJSGlFKUaBVN6ANoFkdAh13/zSThYXV9lChoBmgJaA9DCB+/t+nPDibAlIaUUpRoFU0MAWgWR0CHYX/b0voNdX2UKGgGaAloD0MI5Xyx9+IUUUCUhpRSlGgVTegDaBZHQIdhu8M/hVF1fZQoaAZoCWgPQwhj7lpCPsxnQJSGlFKUaBVN6ANoFkdAh2YlcIJJG3V9lChoBmgJaA9DCJ7vp8ZL7y/AlIaUUpRoFUvOaBZHQIdogybhFVl1fZQoaAZoCWgPQwjFWKZfIl4UwJSGlFKUaBVNEgFoFkdAh2/xradtmHV9lChoBmgJaA9DCOw00lL5HWtAlIaUUpRoFU3KAWgWR0CHeKBreqJedX2UKGgGaAloD0MIUTI5tTN7XECUhpRSlGgVTegDaBZHQId81gOSW7h1fZQoaAZoCWgPQwhPkq6ZfF8wQJSGlFKUaBVL+GgWR0CHgdw2ETQFdX2UKGgGaAloD0MIxXQhVv+kYUCUhpRSlGgVTegDaBZHQIeF+YrrgO11fZQoaAZoCWgPQwjOOXgmNIEqQJSGlFKUaBVNFwFoFkdAh48at1ZDA3V9lChoBmgJaA9DCJ/ouvCDUwpAlIaUUpRoFU0QAWgWR0CHnP7laKUFdX2UKGgGaAloD0MIV3ptNlbXYUCUhpRSlGgVTegDaBZHQIed+ipNsWR1fZQoaAZoCWgPQwiDwqBMo79kQJSGlFKUaBVN6ANoFkdAh6MpcX3xnXV9lChoBmgJaA9DCHQMyF5vVGFAlIaUUpRoFU3oA2gWR0CHqP/qgRK6dX2UKGgGaAloD0MITFXa4poLY0CUhpRSlGgVTegDaBZHQIexatYB/7V1fZQoaAZoCWgPQwjbTfBNUz1kQJSGlFKUaBVN6ANoFkdAh7eQXZXdTHV9lChoBmgJaA9DCNCAejPq6WBAlIaUUpRoFU3oA2gWR0CHwv9roGILdX2UKGgGaAloD0MIP+JXrGHjYkCUhpRSlGgVTegDaBZHQIfIgWBSUC91fZQoaAZoCWgPQwhZh6OrdINgQJSGlFKUaBVN6ANoFkdAh8uH4oJAuHV9lChoBmgJaA9DCNap8j0jeUdAlIaUUpRoFUv/aBZHQIfOPt6X0Gx1fZQoaAZoCWgPQwhn8zgMZsNiQJSGlFKUaBVN6ANoFkdAh8+bW3BpH3V9lChoBmgJaA9DCNi8qrPamWFAlIaUUpRoFU3oA2gWR0CHz89i+cpcdX2UKGgGaAloD0MI1J0nnjMtZECUhpRSlGgVTegDaBZHQIfUavPkaMt1fZQoaAZoCWgPQwjJHMu76q1IQJSGlFKUaBVL3WgWR0CH4TT1kDp1dX2UKGgGaAloD0MIlPsdioJxb0CUhpRSlGgVTYcCaBZHQIfjGxjawll1fZQoaAZoCWgPQwgCf/j578EJQJSGlFKUaBVL3mgWR0CH5VOARTS9dX2UKGgGaAloD0MIpaFGIUmZYUCUhpRSlGgVTegDaBZHQIfnckhRqGl1fZQoaAZoCWgPQwhm+E83UDleQJSGlFKUaBVN6ANoFkdAh/AiAtnPFHV9lChoBmgJaA9DCJGA0eXNQ1pAlIaUUpRoFU3oA2gWR0CH87ucc2itdX2UKGgGaAloD0MILzIBv0YsXECUhpRSlGgVTegDaBZHQIf7tjoZAIJ1fZQoaAZoCWgPQwjcDg2LUeRcQJSGlFKUaBVN6ANoFkdAiAmUihWYGHV9lChoBmgJaA9DCHqNXaJ6VmBAlIaUUpRoFU3oA2gWR0CIDwMqBmPHdX2UKGgGaAloD0MIbvyJygaTYECUhpRSlGgVTegDaBZHQIgVS+Yc/+t1fZQoaAZoCWgPQwg5YFeTp7g0QJSGlFKUaBVNFAFoFkdAiBw3hOxja3V9lChoBmgJaA9DCIpyafxCYWJAlIaUUpRoFU3oA2gWR0CIJPHeaa1DdX2UKGgGaAloD0MIJnDrbp4yMECUhpRSlGgVS9ZoFkdAiCjZYYBNmHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3ed709df1b18ec5342c970d04c008958827b7cef3ef773f75816ecf58ce6918
|
3 |
+
size 144102
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7b6139a70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7b6139b00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7b6139b90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7b6139c20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb7b6139cb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb7b6139d40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7b6139dd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb7b6139e60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7b6139ef0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7b6139f80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7b613d050>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb7b6178cc0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651685849.4142776,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2X2T32/FS6gR2ruxuKITjuklQ6gLWatgAAgD8AAIA/s3jjvVwLIroHHDUzHkPHr6zZ1zntsM2zAACAPwAAgD9A2qM9w90PunEWS7kL/I60oDfuugAibTgAAIA/AACAP/3tnj5/Ekw/dmuIPu/syr4vLy0+tiRNvQAAAAAAAAAAwBEwvnGZbzyeKuo6uwY9ual5Ab6iqoU4AACAPwAAgD8F4o2+HwX8OKvYlbsn07A81w0evuh3jj0AAAAAAACAP2qdVL5DgKo/TokUvy8Xrb4vaU6+RrdRvgAAAAAAAAAATUQZvVJ4ijhq6kk7ZXyQM0uDbTugAwSzAACAPwAAgD8Ki40+vdx0PGoXhLplRbW4F98BPsodnzkAAIA/AACAP1oQsz2FQ/65a0KFOwBpVzWmRDU5T4yZugAAgD8AAIA/kxhaPqSBHzxmz1k6lCtAOItqqz0Q4H+5AACAPwAAgD/ARcS9w5FGunICOTu16LM2dzOPOy1fVboAAIA/AACAP82Mhrtc4yu6ABcOOjOzATRzaUm7FjsjuQAAgD8AAIA/xcm6vtlStz6NfPE9d/5zvpgoM7yyMhK9AAAAAAAAAACmNcW9Qt0SP7BQJr3JrDq+5eqAvBaUdD0AAAAAAAAAAEAPvj2F84S5ksJTOglVzLRyqmG7JYF7uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6L6c2a5VXkCUhpRSlIwBbJRN6AOMAXSUR0CELcQwsXizdX2UKGgGaAloD0MIsi0DzlKtYkCUhpRSlGgVTegDaBZHQIQt5eb/ffp1fZQoaAZoCWgPQwgg71UrE8dbQJSGlFKUaBVN6ANoFkdAhDMOieumrXV9lChoBmgJaA9DCAUVVb/SFGNAlIaUUpRoFU3oA2gWR0CEM+rS3LFGdX2UKGgGaAloD0MIIc7DCUxvX0CUhpRSlGgVTegDaBZHQIQ1uhmGucN1fZQoaAZoCWgPQwj4qL9eYThaQJSGlFKUaBVN6ANoFkdAhEBuBDohZHV9lChoBmgJaA9DCFc+y/PgaFlAlIaUUpRoFU3oA2gWR0CEQHPv8ZUDdX2UKGgGaAloD0MI8uocA7LHKUCUhpRSlGgVTVMBaBZHQIRGBMYdhiN1fZQoaAZoCWgPQwiWQiCXOPdhQJSGlFKUaBVN6ANoFkdAhEeNxMnJDHV9lChoBmgJaA9DCCP3dHVHx2FAlIaUUpRoFU3oA2gWR0CETzHq/ub7dX2UKGgGaAloD0MI09wKYTW+LUCUhpRSlGgVTUQBaBZHQIRQZcPe54J1fZQoaAZoCWgPQwgvGFxzR1lTQJSGlFKUaBVN6ANoFkdAhFkG4AjptHV9lChoBmgJaA9DCIkHlE25FGBAlIaUUpRoFU3oA2gWR0CEXaHlfZ27dX2UKGgGaAloD0MIAtcVM8LNXkCUhpRSlGgVTegDaBZHQISDjeQ+2Vp1fZQoaAZoCWgPQwivJk9ZTVVgQJSGlFKUaBVN6ANoFkdAhJCeEZiuuHV9lChoBmgJaA9DCCb+KOrMql9AlIaUUpRoFU3oA2gWR0CEkjqi48U3dX2UKGgGaAloD0MIJxQi4BDrX0CUhpRSlGgVTegDaBZHQISiDSThYNl1fZQoaAZoCWgPQwgkfsUarrVkQJSGlFKUaBVN6ANoFkdAhK6eBpYcN3V9lChoBmgJaA9DCPhwyXGntFdAlIaUUpRoFU3oA2gWR0CEtZdyksSTdX2UKGgGaAloD0MIa/P/qiPtX0CUhpRSlGgVTegDaBZHQIS2r7Q9ic51fZQoaAZoCWgPQwi5Nem2RCxdQJSGlFKUaBVN6ANoFkdAhLkTrVvuPXV9lChoBmgJaA9DCBo1XyUfPVtAlIaUUpRoFU3oA2gWR0CExtASnLq2dX2UKGgGaAloD0MIE9OFWP2AW0CUhpRSlGgVTegDaBZHQITG1aKUFB91fZQoaAZoCWgPQwh+xRoucuFZQJSGlFKUaBVN6ANoFkdAhYt5eRgZ0nV9lChoBmgJaA9DCOS6KeW1KFFAlIaUUpRoFU3oA2gWR0CFjXp0wJw9dX2UKGgGaAloD0MIEfxvJTvzWkCUhpRSlGgVTegDaBZHQIWXGFBY3eh1fZQoaAZoCWgPQwhvnX+77GBaQJSGlFKUaBVN6ANoFkdAhZiAavRqoXV9lChoBmgJaA9DCJZ31QPmrT9AlIaUUpRoFU1AAWgWR0CFnmP5HmRvdX2UKGgGaAloD0MIritmhLewYUCUhpRSlGgVTegDaBZHQIWhzgdfb9J1fZQoaAZoCWgPQwjPnsvUJCxVQJSGlFKUaBVN6ANoFkdAhaazXjENv3V9lChoBmgJaA9DCMgljjyQbmFAlIaUUpRoFU3oA2gWR0CFzHjNIK+jdX2UKGgGaAloD0MIDK65o3+fZECUhpRSlGgVTegDaBZHQIXYcBXCCSR1fZQoaAZoCWgPQwhRMjm1M05hQJSGlFKUaBVN6ANoFkdAhdnzW5H3DnV9lChoBmgJaA9DCGZK628JEF1AlIaUUpRoFU3oA2gWR0CF59pRoAXEdX2UKGgGaAloD0MIKerMPSSKX0CUhpRSlGgVTegDaBZHQIXyyTdLxqh1fZQoaAZoCWgPQwiBlNi1vWVgQJSGlFKUaBVN6ANoFkdAhfhxceKba3V9lChoBmgJaA9DCAlszsEzT2BAlIaUUpRoFU3oA2gWR0CF+4BClabGdX2UKGgGaAloD0MIqtOBrKeCNkCUhpRSlGgVTR0BaBZHQIX+mhdt2s91fZQoaAZoCWgPQwiZ1TvcDjtfQJSGlFKUaBVN6ANoFkdAhgeeMZP2wnV9lChoBmgJaA9DCKt3uB0aBlhAlIaUUpRoFU3oA2gWR0CGB6cfeUILdX2UKGgGaAloD0MIhnZOs0A78r+UhpRSlGgVTTYBaBZHQIYNUvmHP/t1fZQoaAZoCWgPQwgCRwINNvhfQJSGlFKUaBVN6ANoFkdAhg2IESuhbnV9lChoBmgJaA9DCC2T4Xi+JmJAlIaUUpRoFU3oA2gWR0CGDvPAwfyPdX2UKGgGaAloD0MIPX5v05/oY0CUhpRSlGgVTegDaBZHQIYVqcoYvWZ1fZQoaAZoCWgPQwj8OQX52RBbQJSGlFKUaBVN6ANoFkdAhhbSvC/Gl3V9lChoBmgJaA9DCOJbWDfeBGVAlIaUUpRoFU3oA2gWR0CGG8cBltj1dX2UKGgGaAloD0MIt2EUBI81YUCUhpRSlGgVTegDaBZHQIYenHPu5SZ1fZQoaAZoCWgPQwhGtB1Td/BgQJSGlFKUaBVN6ANoFkdAhiMMfq5byHV9lChoBmgJaA9DCD6xTpXvoSjAlIaUUpRoFUv6aBZHQIYoarYGt6p1fZQoaAZoCWgPQwhRhNTt7ORaQJSGlFKUaBVN6ANoFkdAhkfnzxwyZnV9lChoBmgJaA9DCD/iV6zh+2BAlIaUUpRoFU3oA2gWR0CGVFSydFvydX2UKGgGaAloD0MI5bUSusvEZkCUhpRSlGgVTegDaBZHQIZyt1wHZ9N1fZQoaAZoCWgPQwiUS+MX3ihiQJSGlFKUaBVN6ANoFkdAhnlhGx2SuHV9lChoBmgJaA9DCCUhkbbx8l1AlIaUUpRoFU3oA2gWR0CGfO3Jgb6ydX2UKGgGaAloD0MIqcKf4c27WECUhpRSlGgVTegDaBZHQIaAPhQ3xWl1fZQoaAZoCWgPQwifdvhrMktgQJSGlFKUaBVN6ANoFkdAholYa5wwTXV9lChoBmgJaA9DCOsCXmbYMF1AlIaUUpRoFU3oA2gWR0CGiV8vVVghdX2UKGgGaAloD0MIJc0f01oXY0CUhpRSlGgVTegDaBZHQIaPbCcf/3p1fZQoaAZoCWgPQwgoui784GBYQJSGlFKUaBVN6ANoFkdAho+j0th/iHV9lChoBmgJaA9DCFGE1O3stWBAlIaUUpRoFU3oA2gWR0CHVgxagVXWdX2UKGgGaAloD0MIJSAm4cLcZECUhpRSlGgVTegDaBZHQIdXJMi8nNR1fZQoaAZoCWgPQwjUSba6nNhIwJSGlFKUaBVL/mgWR0CHVz5fMOf/dX2UKGgGaAloD0MIU5eMYyQ/YUCUhpRSlGgVTegDaBZHQIdbhAnlXBB1fZQoaAZoCWgPQwj8qlyo/HhlQJSGlFKUaBVN6ANoFkdAh13/zSThYXV9lChoBmgJaA9DCB+/t+nPDibAlIaUUpRoFU0MAWgWR0CHYX/b0voNdX2UKGgGaAloD0MI5Xyx9+IUUUCUhpRSlGgVTegDaBZHQIdhu8M/hVF1fZQoaAZoCWgPQwhj7lpCPsxnQJSGlFKUaBVN6ANoFkdAh2YlcIJJG3V9lChoBmgJaA9DCJ7vp8ZL7y/AlIaUUpRoFUvOaBZHQIdogybhFVl1fZQoaAZoCWgPQwjFWKZfIl4UwJSGlFKUaBVNEgFoFkdAh2/xradtmHV9lChoBmgJaA9DCOw00lL5HWtAlIaUUpRoFU3KAWgWR0CHeKBreqJedX2UKGgGaAloD0MIUTI5tTN7XECUhpRSlGgVTegDaBZHQId81gOSW7h1fZQoaAZoCWgPQwhPkq6ZfF8wQJSGlFKUaBVL+GgWR0CHgdw2ETQFdX2UKGgGaAloD0MIxXQhVv+kYUCUhpRSlGgVTegDaBZHQIeF+YrrgO11fZQoaAZoCWgPQwjOOXgmNIEqQJSGlFKUaBVNFwFoFkdAh48at1ZDA3V9lChoBmgJaA9DCJ/ouvCDUwpAlIaUUpRoFU0QAWgWR0CHnP7laKUFdX2UKGgGaAloD0MIV3ptNlbXYUCUhpRSlGgVTegDaBZHQIed+ipNsWR1fZQoaAZoCWgPQwiDwqBMo79kQJSGlFKUaBVN6ANoFkdAh6MpcX3xnXV9lChoBmgJaA9DCHQMyF5vVGFAlIaUUpRoFU3oA2gWR0CHqP/qgRK6dX2UKGgGaAloD0MITFXa4poLY0CUhpRSlGgVTegDaBZHQIexatYB/7V1fZQoaAZoCWgPQwjbTfBNUz1kQJSGlFKUaBVN6ANoFkdAh7eQXZXdTHV9lChoBmgJaA9DCNCAejPq6WBAlIaUUpRoFU3oA2gWR0CHwv9roGILdX2UKGgGaAloD0MIP+JXrGHjYkCUhpRSlGgVTegDaBZHQIfIgWBSUC91fZQoaAZoCWgPQwhZh6OrdINgQJSGlFKUaBVN6ANoFkdAh8uH4oJAuHV9lChoBmgJaA9DCNap8j0jeUdAlIaUUpRoFUv/aBZHQIfOPt6X0Gx1fZQoaAZoCWgPQwhn8zgMZsNiQJSGlFKUaBVN6ANoFkdAh8+bW3BpH3V9lChoBmgJaA9DCNi8qrPamWFAlIaUUpRoFU3oA2gWR0CHz89i+cpcdX2UKGgGaAloD0MI1J0nnjMtZECUhpRSlGgVTegDaBZHQIfUavPkaMt1fZQoaAZoCWgPQwjJHMu76q1IQJSGlFKUaBVL3WgWR0CH4TT1kDp1dX2UKGgGaAloD0MIlPsdioJxb0CUhpRSlGgVTYcCaBZHQIfjGxjawll1fZQoaAZoCWgPQwgCf/j578EJQJSGlFKUaBVL3mgWR0CH5VOARTS9dX2UKGgGaAloD0MIpaFGIUmZYUCUhpRSlGgVTegDaBZHQIfnckhRqGl1fZQoaAZoCWgPQwhm+E83UDleQJSGlFKUaBVN6ANoFkdAh/AiAtnPFHV9lChoBmgJaA9DCJGA0eXNQ1pAlIaUUpRoFU3oA2gWR0CH87ucc2itdX2UKGgGaAloD0MILzIBv0YsXECUhpRSlGgVTegDaBZHQIf7tjoZAIJ1fZQoaAZoCWgPQwjcDg2LUeRcQJSGlFKUaBVN6ANoFkdAiAmUihWYGHV9lChoBmgJaA9DCHqNXaJ6VmBAlIaUUpRoFU3oA2gWR0CIDwMqBmPHdX2UKGgGaAloD0MIbvyJygaTYECUhpRSlGgVTegDaBZHQIgVS+Yc/+t1fZQoaAZoCWgPQwg5YFeTp7g0QJSGlFKUaBVNFAFoFkdAiBw3hOxja3V9lChoBmgJaA9DCIpyafxCYWJAlIaUUpRoFU3oA2gWR0CIJPHeaa1DdX2UKGgGaAloD0MIJnDrbp4yMECUhpRSlGgVS9ZoFkdAiCjZYYBNmHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be9ca0346b394738f6c70fd42833e89b18e2eed0cd2ac98f4f62deedf7e245e5
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b4e5464b0e2a3c5397abed940c1fdf42a02296fd57cd2c2c6133766bd7ac5cb
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6507d63b15a72199875f4d86cb941879f9b2d84f4ca147e2c115fe7df2fa7e64
|
3 |
+
size 252150
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 215.14847624818032, "std_reward": 49.07524901497926, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T17:55:12.485340"}
|