Commit
·
7d289a7
1
Parent(s):
5048c77
Training in progress, step 500
Browse files- .gitignore +1 -0
- added_tokens.json +1 -0
- config.json +107 -0
- eval.py +137 -0
- nohup.out +550 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run.sh +35 -0
- run_speech_recognition_ctc.py +737 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.json +1 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 59, "</s>": 60}
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_feature_length": 64,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.25,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_prob": 0.75,
|
68 |
+
"model_type": "wav2vec2",
|
69 |
+
"num_adapter_layers": 3,
|
70 |
+
"num_attention_heads": 16,
|
71 |
+
"num_codevector_groups": 2,
|
72 |
+
"num_codevectors_per_group": 320,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 24,
|
77 |
+
"num_negatives": 100,
|
78 |
+
"output_hidden_size": 1024,
|
79 |
+
"pad_token_id": 58,
|
80 |
+
"proj_codevector_dim": 768,
|
81 |
+
"tdnn_dilation": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
1,
|
86 |
+
1
|
87 |
+
],
|
88 |
+
"tdnn_dim": [
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
1500
|
94 |
+
],
|
95 |
+
"tdnn_kernel": [
|
96 |
+
5,
|
97 |
+
3,
|
98 |
+
3,
|
99 |
+
1,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.17.0.dev0",
|
104 |
+
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 61,
|
106 |
+
"xvector_output_dim": 512
|
107 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
+
|
9 |
+
from transformers import AutoFeatureExtractor, pipeline
|
10 |
+
|
11 |
+
|
12 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
13 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
14 |
+
|
15 |
+
log_outputs = args.log_outputs
|
16 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
17 |
+
|
18 |
+
# load metric
|
19 |
+
wer = load_metric("wer")
|
20 |
+
cer = load_metric("cer")
|
21 |
+
|
22 |
+
# compute metrics
|
23 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
24 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
25 |
+
|
26 |
+
# print & log results
|
27 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str) -> str:
|
51 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
52 |
+
|
53 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
54 |
+
|
55 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
56 |
+
|
57 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
58 |
+
# note that order is important here!
|
59 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
60 |
+
|
61 |
+
for t in token_sequences_to_ignore:
|
62 |
+
text = " ".join(text.split(t))
|
63 |
+
|
64 |
+
return text
|
65 |
+
|
66 |
+
|
67 |
+
def main(args):
|
68 |
+
# load dataset
|
69 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
70 |
+
|
71 |
+
# for testing: only process the first two examples as a test
|
72 |
+
# dataset = dataset.select(range(10))
|
73 |
+
|
74 |
+
# load processor
|
75 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
76 |
+
sampling_rate = feature_extractor.sampling_rate
|
77 |
+
|
78 |
+
# resample audio
|
79 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
80 |
+
|
81 |
+
# load eval pipeline
|
82 |
+
if args.device is None:
|
83 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
84 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
85 |
+
|
86 |
+
# map function to decode audio
|
87 |
+
def map_to_pred(batch):
|
88 |
+
prediction = asr(
|
89 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
90 |
+
)
|
91 |
+
|
92 |
+
batch["prediction"] = prediction["text"]
|
93 |
+
batch["target"] = normalize_text(batch["sentence"])
|
94 |
+
return batch
|
95 |
+
|
96 |
+
# run inference on all examples
|
97 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
98 |
+
|
99 |
+
# compute and log_results
|
100 |
+
# do not change function below
|
101 |
+
log_results(result, args)
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
parser = argparse.ArgumentParser()
|
106 |
+
|
107 |
+
parser.add_argument(
|
108 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
109 |
+
)
|
110 |
+
parser.add_argument(
|
111 |
+
"--dataset",
|
112 |
+
type=str,
|
113 |
+
required=True,
|
114 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
115 |
+
)
|
116 |
+
parser.add_argument(
|
117 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
118 |
+
)
|
119 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
120 |
+
parser.add_argument(
|
121 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
128 |
+
)
|
129 |
+
parser.add_argument(
|
130 |
+
"--device",
|
131 |
+
type=int,
|
132 |
+
default=None,
|
133 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
134 |
+
)
|
135 |
+
args = parser.parse_args()
|
136 |
+
|
137 |
+
main(args)
|
nohup.out
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0%| | 0/1 [00:00<?, ?ba/s]
|
|
|
1 |
0%| | 0/1 [00:00<?, ?ba/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
0%| | 0/1 [00:00<?, ?ba/s]
|
|
|
3 |
0%| | 0/1 [00:00<?, ?ba/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
0%| | 0/1250 [00:00<?, ?it/s]
|
5 |
0%| | 1/1250 [00:02<53:39, 2.58s/it]
|
6 |
0%| | 2/1250 [00:04<43:18, 2.08s/it]
|
7 |
0%| | 3/1250 [00:05<37:42, 1.81s/it]
|
8 |
0%| | 4/1250 [00:07<34:12, 1.65s/it]
|
9 |
0%| | 5/1250 [00:08<31:07, 1.50s/it]
|
10 |
0%| | 6/1250 [00:09<27:31, 1.33s/it]
|
11 |
1%| | 7/1250 [00:11<35:11, 1.70s/it]
|
12 |
1%| | 8/1250 [00:13<35:39, 1.72s/it]
|
13 |
1%| | 9/1250 [00:15<34:52, 1.69s/it]
|
14 |
1%| | 10/1250 [00:16<33:13, 1.61s/it]
|
15 |
1%| | 11/1250 [00:17<30:26, 1.47s/it]
|
16 |
1%| | 12/1250 [00:18<27:37, 1.34s/it]
|
17 |
1%| | 13/1250 [00:21<34:42, 1.68s/it]
|
18 |
1%| | 14/1250 [00:23<34:49, 1.69s/it]
|
19 |
1%| | 15/1250 [00:24<34:04, 1.66s/it]
|
20 |
1%|▏ | 16/1250 [00:26<32:22, 1.57s/it]
|
21 |
1%|▏ | 17/1250 [00:27<29:57, 1.46s/it]
|
22 |
1%|▏ | 18/1250 [00:28<26:57, 1.31s/it]
|
23 |
2%|▏ | 19/1250 [00:30<32:14, 1.57s/it]
|
24 |
2%|▏ | 20/1250 [00:32<32:52, 1.60s/it]
|
25 |
2%|▏ | 21/1250 [00:33<32:10, 1.57s/it]
|
26 |
2%|▏ | 22/1250 [00:34<30:44, 1.50s/it]
|
27 |
2%|▏ | 23/1250 [00:36<28:38, 1.40s/it]
|
28 |
2%|▏ | 24/1250 [00:37<26:12, 1.28s/it]
|
29 |
2%|▏ | 25/1250 [00:38<28:56, 1.42s/it]
|
30 |
2%|▏ | 26/1250 [00:41<38:28, 1.89s/it]
|
31 |
2%|▏ | 27/1250 [00:43<37:43, 1.85s/it]
|
32 |
2%|▏ | 28/1250 [00:45<35:59, 1.77s/it]
|
33 |
2%|▏ | 29/1250 [00:46<33:21, 1.64s/it]
|
34 |
2%|▏ | 30/1250 [00:47<30:47, 1.51s/it]
|
35 |
2%|▏ | 31/1250 [00:48<27:31, 1.36s/it]
|
36 |
3%|▎ | 32/1250 [00:51<33:43, 1.66s/it]
|
37 |
3%|▎ | 33/1250 [00:52<34:25, 1.70s/it]
|
38 |
3%|▎ | 34/1250 [00:54<33:34, 1.66s/it]
|
39 |
3%|▎ | 35/1250 [00:55<31:55, 1.58s/it]
|
40 |
3%|▎ | 36/1250 [00:56<29:40, 1.47s/it]
|
41 |
3%|▎ | 37/1250 [00:58<26:54, 1.33s/it]
|
42 |
3%|▎ | 38/1250 [01:00<33:02, 1.64s/it]
|
43 |
3%|▎ | 39/1250 [01:02<33:43, 1.67s/it]
|
44 |
3%|▎ | 40/1250 [01:03<32:32, 1.61s/it]
|
45 |
3%|▎ | 41/1250 [01:04<30:50, 1.53s/it]
|
46 |
3%|▎ | 42/1250 [01:06<28:27, 1.41s/it]
|
47 |
3%|▎ | 43/1250 [01:07<25:45, 1.28s/it]
|
48 |
4%|▎ | 44/1250 [01:09<31:31, 1.57s/it]
|
49 |
4%|▎ | 45/1250 [01:10<32:20, 1.61s/it]
|
50 |
4%|▎ | 46/1250 [01:12<31:58, 1.59s/it]
|
51 |
4%|▍ | 47/1250 [01:13<30:42, 1.53s/it]
|
52 |
4%|▍ | 48/1250 [01:15<28:46, 1.44s/it]
|
53 |
4%|▍ | 49/1250 [01:16<26:22, 1.32s/it]
|
54 |
4%|▍ | 50/1250 [01:17<29:12, 1.46s/it]
|
55 |
4%|▍ | 51/1250 [01:20<37:20, 1.87s/it]
|
56 |
4%|▍ | 52/1250 [01:22<36:38, 1.83s/it]
|
57 |
4%|▍ | 53/1250 [01:24<35:02, 1.76s/it]
|
58 |
4%|▍ | 54/1250 [01:25<32:55, 1.65s/it]
|
59 |
4%|▍ | 55/1250 [01:26<30:10, 1.51s/it]
|
60 |
4%|▍ | 56/1250 [01:27<26:59, 1.36s/it]
|
61 |
5%|▍ | 57/1250 [01:29<32:08, 1.62s/it]
|
62 |
5%|▍ | 58/1250 [01:31<32:44, 1.65s/it]
|
63 |
5%|▍ | 59/1250 [01:33<31:55, 1.61s/it]
|
64 |
5%|▍ | 60/1250 [01:34<30:25, 1.53s/it]
|
65 |
5%|▍ | 61/1250 [01:35<28:26, 1.44s/it]
|
66 |
5%|▍ | 62/1250 [01:36<26:14, 1.33s/it]
|
67 |
5%|▌ | 63/1250 [01:39<32:19, 1.63s/it]
|
68 |
5%|▌ | 64/1250 [01:40<33:12, 1.68s/it]
|
69 |
5%|▌ | 65/1250 [01:42<32:10, 1.63s/it]
|
70 |
5%|▌ | 66/1250 [01:43<30:43, 1.56s/it]
|
71 |
5%|▌ | 67/1250 [01:45<28:35, 1.45s/it]
|
72 |
5%|▌ | 68/1250 [01:46<25:57, 1.32s/it]
|
73 |
6%|▌ | 69/1250 [01:48<33:24, 1.70s/it]
|
74 |
6%|▌ | 70/1250 [01:50<34:10, 1.74s/it]
|
75 |
6%|▌ | 71/1250 [01:51<32:41, 1.66s/it]
|
76 |
6%|▌ | 72/1250 [01:53<30:43, 1.57s/it]
|
77 |
6%|▌ | 73/1250 [01:54<28:32, 1.46s/it]
|
78 |
6%|▌ | 74/1250 [01:55<25:40, 1.31s/it]
|
79 |
6%|▌ | 75/1250 [01:57<28:23, 1.45s/it]
|
80 |
6%|▌ | 76/1250 [02:00<37:02, 1.89s/it]
|
81 |
6%|▌ | 77/1250 [02:01<36:23, 1.86s/it]
|
82 |
6%|▌ | 78/1250 [02:03<34:41, 1.78s/it]
|
83 |
6%|▋ | 79/1250 [02:04<32:21, 1.66s/it]
|
84 |
6%|▋ | 80/1250 [02:06<29:42, 1.52s/it]
|
85 |
6%|▋ | 81/1250 [02:07<26:30, 1.36s/it]
|
86 |
7%|▋ | 82/1250 [02:09<32:23, 1.66s/it]
|
87 |
7%|▋ | 83/1250 [02:11<32:49, 1.69s/it]
|
88 |
7%|▋ | 84/1250 [02:12<31:56, 1.64s/it]
|
89 |
7%|▋ | 85/1250 [02:14<30:09, 1.55s/it]
|
90 |
7%|▋ | 86/1250 [02:15<27:51, 1.44s/it]
|
91 |
7%|▋ | 87/1250 [02:16<25:16, 1.30s/it]
|
92 |
7%|▋ | 88/1250 [02:18<32:07, 1.66s/it]
|
93 |
7%|▋ | 89/1250 [02:20<32:48, 1.70s/it]
|
94 |
7%|▋ | 90/1250 [02:22<31:43, 1.64s/it]
|
95 |
7%|▋ | 91/1250 [02:23<30:21, 1.57s/it]
|
96 |
7%|▋ | 92/1250 [02:24<28:26, 1.47s/it]
|
97 |
7%|▋ | 93/1250 [02:25<26:29, 1.37s/it]
|
98 |
8%|▊ | 94/1250 [02:28<31:23, 1.63s/it]
|
99 |
8%|▊ | 95/1250 [02:29<31:51, 1.66s/it]
|
100 |
8%|▊ | 96/1250 [02:31<30:50, 1.60s/it]
|
101 |
8%|▊ | 97/1250 [02:32<29:30, 1.54s/it]
|
102 |
8%|▊ | 98/1250 [02:33<27:25, 1.43s/it]
|
103 |
8%|▊ | 99/1250 [02:34<24:44, 1.29s/it]
|
104 |
8%|▊ | 100/1250 [02:36<26:59, 1.41s/it]
|
105 |
|
106 |
8%|▊ | 100/1250 [02:36<26:59, 1.41s/it]
|
107 |
8%|▊ | 101/1250 [02:39<35:08, 1.84s/it]
|
108 |
8%|▊ | 102/1250 [02:41<34:28, 1.80s/it]
|
109 |
8%|▊ | 103/1250 [02:42<32:30, 1.70s/it]
|
110 |
8%|▊ | 104/1250 [02:43<30:05, 1.58s/it]
|
111 |
8%|▊ | 105/1250 [02:44<27:37, 1.45s/it]
|
112 |
8%|▊ | 106/1250 [02:45<24:44, 1.30s/it]
|
113 |
9%|▊ | 107/1250 [02:48<30:38, 1.61s/it]
|
114 |
9%|▊ | 108/1250 [02:49<31:24, 1.65s/it]
|
115 |
9%|▊ | 109/1250 [02:51<30:45, 1.62s/it]
|
116 |
9%|▉ | 110/1250 [02:52<29:22, 1.55s/it]
|
117 |
9%|▉ | 111/1250 [02:54<27:20, 1.44s/it]
|
118 |
9%|▉ | 112/1250 [02:55<24:41, 1.30s/it]
|
119 |
9%|▉ | 113/1250 [02:57<29:34, 1.56s/it]
|
120 |
9%|▉ | 114/1250 [02:58<30:11, 1.59s/it]
|
121 |
9%|▉ | 115/1250 [03:00<29:50, 1.58s/it]
|
122 |
9%|▉ | 116/1250 [03:01<28:49, 1.53s/it]
|
123 |
9%|▉ | 117/1250 [03:03<26:52, 1.42s/it]
|
124 |
9%|▉ | 118/1250 [03:04<24:25, 1.29s/it]
|
125 |
10%|▉ | 119/1250 [03:06<30:27, 1.62s/it]
|
126 |
10%|▉ | 120/1250 [03:08<31:40, 1.68s/it]
|
127 |
10%|▉ | 121/1250 [03:09<30:52, 1.64s/it]
|
128 |
10%|▉ | 122/1250 [03:11<29:20, 1.56s/it]
|
129 |
10%|▉ | 123/1250 [03:12<27:11, 1.45s/it]
|
130 |
10%|▉ | 124/1250 [03:13<24:31, 1.31s/it]
|
131 |
10%|█ | 125/1250 [03:15<28:39, 1.53s/it]
|
132 |
10%|█ | 126/1250 [03:18<36:45, 1.96s/it]
|
133 |
10%|█ | 127/1250 [03:20<35:48, 1.91s/it]
|
134 |
10%|█ | 128/1250 [03:21<33:48, 1.81s/it]
|
135 |
10%|█ | 129/1250 [03:23<31:32, 1.69s/it]
|
136 |
10%|█ | 130/1250 [03:24<28:58, 1.55s/it]
|
137 |
10%|█ | 131/1250 [03:25<25:53, 1.39s/it]
|
138 |
11%|█ | 132/1250 [03:27<31:02, 1.67s/it]
|
139 |
11%|█ | 133/1250 [03:29<31:42, 1.70s/it]
|
140 |
11%|█ | 134/1250 [03:30<30:44, 1.65s/it]
|
141 |
11%|█ | 135/1250 [03:32<29:06, 1.57s/it]
|
142 |
11%|█ | 136/1250 [03:33<26:59, 1.45s/it]
|
143 |
11%|█ | 137/1250 [03:34<24:33, 1.32s/it]
|
144 |
11%|█ | 138/1250 [03:36<30:43, 1.66s/it]
|
145 |
11%|█ | 139/1250 [03:38<31:10, 1.68s/it]
|
146 |
11%|█ | 140/1250 [03:40<30:34, 1.65s/it]
|
147 |
11%|█▏ | 141/1250 [03:41<29:08, 1.58s/it]
|
148 |
11%|█▏ | 142/1250 [03:42<26:41, 1.45s/it]
|
149 |
11%|█▏ | 143/1250 [03:43<24:14, 1.31s/it]
|
150 |
12%|█▏ | 144/1250 [03:46<29:19, 1.59s/it]
|
151 |
12%|█▏ | 145/1250 [03:47<29:55, 1.62s/it]
|
152 |
12%|█▏ | 146/1250 [03:49<29:20, 1.59s/it]
|
153 |
12%|█▏ | 147/1250 [03:50<28:09, 1.53s/it]
|
154 |
12%|█▏ | 148/1250 [03:51<26:42, 1.45s/it]
|
155 |
12%|█▏ | 149/1250 [03:52<24:23, 1.33s/it]
|
156 |
12%|█▏ | 150/1250 [03:54<27:24, 1.49s/it]
|
157 |
12%|█▏ | 151/1250 [03:57<34:21, 1.88s/it]
|
158 |
12%|█▏ | 152/1250 [03:59<33:23, 1.82s/it]
|
159 |
12%|█▏ | 153/1250 [04:00<31:32, 1.72s/it]
|
160 |
12%|█▏ | 154/1250 [04:02<29:24, 1.61s/it]
|
161 |
12%|█▏ | 155/1250 [04:03<27:13, 1.49s/it]
|
162 |
12%|█▏ | 156/1250 [04:04<24:24, 1.34s/it]
|
163 |
13%|█▎ | 157/1250 [04:06<30:38, 1.68s/it]
|
164 |
13%|█▎ | 158/1250 [04:08<30:45, 1.69s/it]
|
165 |
13%|█▎ | 159/1250 [04:10<30:02, 1.65s/it]
|
166 |
13%|█▎ | 160/1250 [04:11<28:40, 1.58s/it]
|
167 |
13%|█▎ | 161/1250 [04:12<26:29, 1.46s/it]
|
168 |
13%|█▎ | 162/1250 [04:13<23:57, 1.32s/it]
|
169 |
13%|█▎ | 163/1250 [04:16<29:54, 1.65s/it]
|
170 |
13%|█▎ | 164/1250 [04:17<30:57, 1.71s/it]
|
171 |
13%|█▎ | 165/1250 [04:19<29:58, 1.66s/it]
|
172 |
13%|█▎ | 166/1250 [04:20<28:18, 1.57s/it]
|
173 |
13%|█▎ | 167/1250 [04:22<26:21, 1.46s/it]
|
174 |
13%|█▎ | 168/1250 [04:23<23:44, 1.32s/it]
|
175 |
14%|█▎ | 169/1250 [04:25<29:27, 1.63s/it]
|
176 |
14%|█▎ | 170/1250 [04:27<30:05, 1.67s/it]
|
177 |
14%|█▎ | 171/1250 [04:28<29:08, 1.62s/it]
|
178 |
14%|█▍ | 172/1250 [04:30<27:20, 1.52s/it]
|
179 |
14%|█▍ | 173/1250 [04:31<25:27, 1.42s/it]
|
180 |
14%|█▍ | 174/1250 [04:32<22:57, 1.28s/it]
|
181 |
14%|█▍ | 175/1250 [04:33<25:14, 1.41s/it]
|
182 |
14%|█▍ | 176/1250 [04:36<32:49, 1.83s/it]
|
183 |
14%|█▍ | 177/1250 [04:38<32:19, 1.81s/it]
|
184 |
14%|█▍ | 178/1250 [04:39<30:54, 1.73s/it]
|
185 |
14%|█▍ | 179/1250 [04:41<29:09, 1.63s/it]
|
186 |
14%|█▍ | 180/1250 [04:42<26:40, 1.50s/it]
|
187 |
14%|█▍ | 181/1250 [04:43<23:54, 1.34s/it]
|
188 |
15%|█▍ | 182/1250 [04:45<28:58, 1.63s/it]
|
189 |
15%|█▍ | 183/1250 [04:47<29:22, 1.65s/it]
|
190 |
15%|█▍ | 184/1250 [04:49<28:39, 1.61s/it]
|
191 |
15%|█▍ | 185/1250 [04:50<27:09, 1.53s/it]
|
192 |
15%|█▍ | 186/1250 [04:51<25:10, 1.42s/it]
|
193 |
15%|█▍ | 187/1250 [04:52<22:49, 1.29s/it]
|
194 |
15%|█▌ | 188/1250 [04:55<29:02, 1.64s/it]
|
195 |
15%|█▌ | 189/1250 [04:56<29:43, 1.68s/it]
|
196 |
15%|█▌ | 190/1250 [04:58<28:55, 1.64s/it]
|
197 |
15%|█▌ | 191/1250 [04:59<27:14, 1.54s/it]
|
198 |
15%|█▌ | 192/1250 [05:00<25:07, 1.43s/it]
|
199 |
15%|█▌ | 193/1250 [05:01<22:42, 1.29s/it]
|
200 |
16%|█▌ | 194/1250 [05:04<27:52, 1.58s/it]
|
201 |
16%|█▌ | 195/1250 [05:05<28:41, 1.63s/it]
|
202 |
16%|█▌ | 196/1250 [05:07<28:06, 1.60s/it]
|
203 |
16%|█▌ | 197/1250 [05:08<27:08, 1.55s/it]
|
204 |
16%|█▌ | 198/1250 [05:09<25:40, 1.46s/it]
|
205 |
16%|█▌ | 199/1250 [05:11<23:23, 1.34s/it]
|
206 |
16%|█▌ | 200/1250 [05:12<26:23, 1.51s/it]
|
207 |
|
208 |
16%|█▌ | 200/1250 [05:12<26:23, 1.51s/it]
|
209 |
16%|█▌ | 201/1250 [05:15<33:33, 1.92s/it]
|
210 |
16%|█▌ | 202/1250 [05:17<32:28, 1.86s/it]
|
211 |
16%|█▌ | 203/1250 [05:19<30:40, 1.76s/it]
|
212 |
16%|█▋ | 204/1250 [05:20<28:51, 1.66s/it]
|
213 |
16%|█▋ | 205/1250 [05:21<26:31, 1.52s/it]
|
214 |
16%|█▋ | 206/1250 [05:22<23:42, 1.36s/it]
|
215 |
17%|█▋ | 207/1250 [05:25<29:02, 1.67s/it]
|
216 |
17%|█▋ | 208/1250 [05:26<29:31, 1.70s/it]
|
217 |
17%|█▋ | 209/1250 [05:28<28:26, 1.64s/it]
|
218 |
17%|█▋ | 210/1250 [05:29<26:54, 1.55s/it]
|
219 |
17%|█▋ | 211/1250 [05:30<24:56, 1.44s/it]
|
220 |
17%|█▋ | 212/1250 [05:31<22:33, 1.30s/it]
|
221 |
17%|█▋ | 213/1250 [05:34<28:02, 1.62s/it]
|
222 |
17%|█▋ | 214/1250 [05:35<28:39, 1.66s/it]
|
223 |
17%|█▋ | 215/1250 [05:37<27:54, 1.62s/it]
|
224 |
17%|█▋ | 216/1250 [05:38<26:40, 1.55s/it]
|
225 |
17%|█▋ | 217/1250 [05:40<24:52, 1.44s/it]
|
226 |
17%|█▋ | 218/1250 [05:41<22:36, 1.31s/it]
|
227 |
18%|█▊ | 219/1250 [05:43<27:51, 1.62s/it]
|
228 |
18%|█▊ | 220/1250 [05:45<28:23, 1.65s/it]
|
229 |
18%|█▊ | 221/1250 [05:46<27:36, 1.61s/it]
|
230 |
18%|█▊ | 222/1250 [05:47<26:09, 1.53s/it]
|
231 |
18%|█▊ | 223/1250 [05:49<24:20, 1.42s/it]
|
232 |
18%|█▊ | 224/1250 [05:50<22:20, 1.31s/it]
|
233 |
18%|█▊ | 225/1250 [05:52<25:04, 1.47s/it]
|
234 |
18%|█▊ | 226/1250 [05:54<32:16, 1.89s/it]
|
235 |
18%|█▊ | 227/1250 [05:56<31:41, 1.86s/it]
|
236 |
18%|█▊ | 228/1250 [05:58<30:00, 1.76s/it]
|
237 |
18%|█▊ | 229/1250 [05:59<27:50, 1.64s/it]
|
238 |
18%|█▊ | 230/1250 [06:00<25:26, 1.50s/it]
|
239 |
18%|█▊ | 231/1250 [06:01<22:49, 1.34s/it]
|
240 |
19%|█▊ | 232/1250 [06:04<27:42, 1.63s/it]
|
241 |
19%|█▊ | 233/1250 [06:05<28:19, 1.67s/it]
|
242 |
19%|█▊ | 234/1250 [06:07<27:47, 1.64s/it]
|
243 |
19%|█▉ | 235/1250 [06:08<26:41, 1.58s/it]
|
244 |
19%|█▉ | 236/1250 [06:10<25:01, 1.48s/it]
|
245 |
19%|█▉ | 237/1250 [06:11<22:57, 1.36s/it]
|
246 |
19%|█▉ | 238/1250 [06:13<28:17, 1.68s/it]
|
247 |
19%|█▉ | 239/1250 [06:15<28:30, 1.69s/it]
|
248 |
19%|█▉ | 240/1250 [06:16<27:31, 1.64s/it]
|
249 |
19%|█▉ | 241/1250 [06:18<25:47, 1.53s/it]
|
250 |
19%|█▉ | 242/1250 [06:19<23:55, 1.42s/it]
|
251 |
19%|█▉ | 243/1250 [06:20<21:42, 1.29s/it]
|
252 |
20%|█▉ | 244/1250 [06:22<27:29, 1.64s/it]
|
253 |
20%|█▉ | 245/1250 [06:24<27:55, 1.67s/it]
|
254 |
20%|█▉ | 246/1250 [06:25<27:02, 1.62s/it]
|
255 |
20%|█▉ | 247/1250 [06:27<25:41, 1.54s/it]
|
256 |
20%|█▉ | 248/1250 [06:28<23:48, 1.43s/it]
|
257 |
20%|█▉ | 249/1250 [06:29<21:24, 1.28s/it]
|
258 |
20%|██ | 250/1250 [06:31<23:19, 1.40s/it]
|
259 |
20%|██ | 251/1250 [06:34<31:22, 1.88s/it]
|
260 |
20%|██ | 252/1250 [06:35<30:47, 1.85s/it]
|
261 |
20%|██ | 253/1250 [06:37<28:53, 1.74s/it]
|
262 |
20%|██ | 254/1250 [06:38<26:57, 1.62s/it]
|
263 |
20%|██ | 255/1250 [06:39<24:37, 1.48s/it]
|
264 |
20%|██ | 256/1250 [06:40<22:05, 1.33s/it]
|
265 |
21%|██ | 257/1250 [06:43<27:33, 1.66s/it]
|
266 |
21%|██ | 258/1250 [06:45<28:01, 1.69s/it]
|
267 |
21%|██ | 259/1250 [06:46<27:31, 1.67s/it]
|
268 |
21%|██ | 260/1250 [06:48<26:14, 1.59s/it]
|
269 |
21%|██ | 261/1250 [06:49<24:25, 1.48s/it]
|
270 |
21%|██ | 262/1250 [06:50<21:49, 1.33s/it]
|
271 |
21%|██ | 263/1250 [06:52<26:46, 1.63s/it]
|
272 |
21%|██ | 264/1250 [06:54<27:14, 1.66s/it]
|
273 |
21%|██ | 265/1250 [06:55<26:29, 1.61s/it]
|
274 |
21%|██▏ | 266/1250 [06:57<25:03, 1.53s/it]
|
275 |
21%|██▏ | 267/1250 [06:58<23:19, 1.42s/it]
|
276 |
21%|██▏ | 268/1250 [06:59<21:12, 1.30s/it]
|
277 |
22%|██▏ | 269/1250 [07:01<25:45, 1.58s/it]
|
278 |
22%|██▏ | 270/1250 [07:03<26:41, 1.63s/it]
|
279 |
22%|██▏ | 271/1250 [07:04<26:09, 1.60s/it]
|
280 |
22%|██▏ | 272/1250 [07:06<24:53, 1.53s/it]
|
281 |
22%|██▏ | 273/1250 [07:07<23:15, 1.43s/it]
|
282 |
22%|██▏ | 274/1250 [07:08<21:06, 1.30s/it]
|
283 |
22%|██▏ | 275/1250 [07:10<22:48, 1.40s/it]
|
284 |
22%|██▏ | 276/1250 [07:12<29:24, 1.81s/it]
|
285 |
22%|██▏ | 277/1250 [07:14<29:19, 1.81s/it]
|
286 |
22%|██▏ | 278/1250 [07:16<27:58, 1.73s/it]
|
287 |
22%|██▏ | 279/1250 [07:17<26:26, 1.63s/it]
|
288 |
22%|██▏ | 280/1250 [07:18<24:16, 1.50s/it]
|
289 |
22%|██▏ | 281/1250 [07:19<21:57, 1.36s/it]
|
290 |
23%|██▎ | 282/1250 [07:22<26:51, 1.66s/it]
|
291 |
23%|██▎ | 283/1250 [07:23<27:18, 1.69s/it]
|
292 |
23%|██▎ | 284/1250 [07:25<26:33, 1.65s/it]
|
293 |
23%|██▎ | 285/1250 [07:26<25:13, 1.57s/it]
|
294 |
23%|██▎ | 286/1250 [07:28<23:27, 1.46s/it]
|
295 |
23%|██▎ | 287/1250 [07:29<21:21, 1.33s/it]
|
296 |
23%|██▎ | 288/1250 [07:31<26:40, 1.66s/it]
|
297 |
23%|██▎ | 289/1250 [07:33<26:49, 1.68s/it]
|
298 |
23%|██▎ | 290/1250 [07:34<26:15, 1.64s/it]
|
299 |
23%|██▎ | 291/1250 [07:36<24:52, 1.56s/it]
|
300 |
23%|██▎ | 292/1250 [07:37<22:56, 1.44s/it]
|
301 |
23%|██▎ | 293/1250 [07:38<20:36, 1.29s/it]
|
302 |
24%|██▎ | 294/1250 [07:40<25:20, 1.59s/it]
|
303 |
24%|██▎ | 295/1250 [07:42<25:45, 1.62s/it]
|
304 |
24%|██▎ | 296/1250 [07:43<24:59, 1.57s/it]
|
305 |
24%|██▍ | 297/1250 [07:44<23:42, 1.49s/it]
|
306 |
24%|██▍ | 298/1250 [07:46<22:08, 1.40s/it]
|
307 |
24%|██▍ | 299/1250 [07:47<20:04, 1.27s/it]
|
308 |
24%|██▍ | 300/1250 [07:48<22:58, 1.45s/it]
|
309 |
|
310 |
24%|██▍ | 300/1250 [07:48<22:58, 1.45s/it]
|
311 |
24%|██▍ | 301/1250 [07:51<29:17, 1.85s/it]
|
312 |
24%|██▍ | 302/1250 [07:53<28:36, 1.81s/it]
|
313 |
24%|██▍ | 303/1250 [07:55<27:16, 1.73s/it]
|
314 |
24%|██▍ | 304/1250 [07:56<25:46, 1.63s/it]
|
315 |
24%|██▍ | 305/1250 [07:57<23:38, 1.50s/it]
|
316 |
24%|██▍ | 306/1250 [07:58<21:16, 1.35s/it]
|
317 |
25%|██▍ | 307/1250 [08:00<25:45, 1.64s/it]
|
318 |
25%|██▍ | 308/1250 [08:02<26:24, 1.68s/it]
|
319 |
25%|██▍ | 309/1250 [08:04<25:52, 1.65s/it]
|
320 |
25%|██▍ | 310/1250 [08:05<24:30, 1.56s/it]
|
321 |
25%|██▍ | 311/1250 [08:06<22:52, 1.46s/it]
|
322 |
25%|██▍ | 312/1250 [08:07<20:47, 1.33s/it]
|
323 |
25%|██▌ | 313/1250 [08:10<26:16, 1.68s/it]
|
324 |
25%|██▌ | 314/1250 [08:12<26:45, 1.72s/it]
|
325 |
25%|██▌ | 315/1250 [08:13<25:53, 1.66s/it]
|
326 |
25%|██▌ | 316/1250 [08:15<24:24, 1.57s/it]
|
327 |
25%|██▌ | 317/1250 [08:16<22:36, 1.45s/it]
|
328 |
25%|█��▌ | 318/1250 [08:17<20:24, 1.31s/it]
|
329 |
26%|██▌ | 319/1250 [08:19<25:10, 1.62s/it]
|
330 |
26%|██▌ | 320/1250 [08:21<25:30, 1.65s/it]
|
331 |
26%|██▌ | 321/1250 [08:22<24:42, 1.60s/it]
|
332 |
26%|██▌ | 322/1250 [08:24<23:36, 1.53s/it]
|
333 |
26%|██▌ | 323/1250 [08:25<21:59, 1.42s/it]
|
334 |
26%|██▌ | 324/1250 [08:26<19:52, 1.29s/it]
|
335 |
26%|██▌ | 325/1250 [08:28<22:51, 1.48s/it]
|
336 |
26%|██▌ | 326/1250 [08:31<28:59, 1.88s/it]
|
337 |
26%|██▌ | 327/1250 [08:32<28:15, 1.84s/it]
|
338 |
26%|██▌ | 328/1250 [08:34<26:38, 1.73s/it]
|
339 |
26%|██▋ | 329/1250 [08:35<24:51, 1.62s/it]
|
340 |
26%|██▋ | 330/1250 [08:36<22:40, 1.48s/it]
|
341 |
26%|██▋ | 331/1250 [08:37<20:21, 1.33s/it]
|
342 |
27%|██▋ | 332/1250 [08:40<24:40, 1.61s/it]
|
343 |
27%|██▋ | 333/1250 [08:41<25:06, 1.64s/it]
|
344 |
27%|██▋ | 334/1250 [08:43<24:38, 1.61s/it]
|
345 |
27%|██▋ | 335/1250 [08:44<23:33, 1.54s/it]
|
346 |
27%|██▋ | 336/1250 [08:45<21:48, 1.43s/it]
|
347 |
27%|██▋ | 337/1250 [08:46<19:37, 1.29s/it]
|
348 |
27%|██▋ | 338/1250 [08:49<24:31, 1.61s/it]
|
349 |
27%|██▋ | 339/1250 [08:50<25:13, 1.66s/it]
|
350 |
27%|██▋ | 340/1250 [08:52<24:29, 1.61s/it]
|
351 |
27%|██▋ | 341/1250 [08:53<23:28, 1.55s/it]
|
352 |
27%|██▋ | 342/1250 [08:55<21:50, 1.44s/it]
|
353 |
27%|██▋ | 343/1250 [08:56<20:01, 1.32s/it]
|
354 |
28%|██▊ | 344/1250 [08:58<24:53, 1.65s/it]
|
355 |
28%|██▊ | 345/1250 [09:00<25:11, 1.67s/it]
|
356 |
28%|██▊ | 346/1250 [09:01<24:32, 1.63s/it]
|
357 |
28%|██▊ | 347/1250 [09:03<23:18, 1.55s/it]
|
358 |
28%|██▊ | 348/1250 [09:04<21:27, 1.43s/it]
|
359 |
28%|██▊ | 349/1250 [09:05<19:20, 1.29s/it]
|
360 |
28%|██▊ | 350/1250 [09:07<22:39, 1.51s/it]
|
361 |
28%|██▊ | 351/1250 [09:10<29:06, 1.94s/it]
|
362 |
28%|██▊ | 352/1250 [09:12<28:24, 1.90s/it]
|
363 |
28%|██▊ | 353/1250 [09:13<26:48, 1.79s/it]
|
364 |
28%|██▊ | 354/1250 [09:14<24:54, 1.67s/it]
|
365 |
28%|██▊ | 355/1250 [09:16<22:40, 1.52s/it]
|
366 |
28%|██▊ | 356/1250 [09:17<20:29, 1.38s/it]
|
367 |
29%|██▊ | 357/1250 [09:19<24:22, 1.64s/it]
|
368 |
29%|██▊ | 358/1250 [09:21<24:35, 1.65s/it]
|
369 |
29%|██▊ | 359/1250 [09:22<23:54, 1.61s/it]
|
370 |
29%|██▉ | 360/1250 [09:23<22:44, 1.53s/it]
|
371 |
29%|██▉ | 361/1250 [09:25<21:14, 1.43s/it]
|
372 |
29%|██▉ | 362/1250 [09:26<19:13, 1.30s/it]
|
373 |
29%|██▉ | 363/1250 [09:28<23:56, 1.62s/it]
|
374 |
29%|██▉ | 364/1250 [09:30<24:15, 1.64s/it]
|
375 |
29%|██▉ | 365/1250 [09:31<23:39, 1.60s/it]
|
376 |
29%|██▉ | 366/1250 [09:33<22:30, 1.53s/it]
|
377 |
29%|██▉ | 367/1250 [09:34<21:11, 1.44s/it]
|
378 |
29%|██▉ | 368/1250 [09:35<19:05, 1.30s/it]
|
379 |
30%|██▉ | 369/1250 [09:37<24:00, 1.63s/it]
|
380 |
30%|██▉ | 370/1250 [09:39<24:30, 1.67s/it]
|
381 |
30%|██▉ | 371/1250 [09:40<23:53, 1.63s/it]
|
382 |
30%|██▉ | 372/1250 [09:42<22:41, 1.55s/it]
|
383 |
30%|██▉ | 373/1250 [09:43<20:58, 1.44s/it]
|
384 |
30%|██▉ | 374/1250 [09:44<18:54, 1.30s/it]
|
385 |
30%|███ | 375/1250 [09:46<20:17, 1.39s/it]
|
386 |
30%|███ | 376/1250 [09:48<26:28, 1.82s/it]
|
387 |
30%|███ | 377/1250 [09:50<25:49, 1.78s/it]
|
388 |
30%|███ | 378/1250 [09:52<24:25, 1.68s/it]
|
389 |
30%|███ | 379/1250 [09:53<22:51, 1.57s/it]
|
390 |
30%|███ | 380/1250 [09:54<21:04, 1.45s/it]
|
391 |
30%|███ | 381/1250 [09:55<18:55, 1.31s/it]
|
392 |
31%|███ | 382/1250 [09:57<23:55, 1.65s/it]
|
393 |
31%|███ | 383/1250 [09:59<24:26, 1.69s/it]
|
394 |
31%|███ | 384/1250 [10:01<23:44, 1.64s/it]
|
395 |
31%|███ | 385/1250 [10:02<22:36, 1.57s/it]
|
396 |
31%|███ | 386/1250 [10:03<21:00, 1.46s/it]
|
397 |
31%|███ | 387/1250 [10:04<19:05, 1.33s/it]
|
398 |
31%|███ | 388/1250 [10:07<22:40, 1.58s/it]
|
399 |
31%|███ | 389/1250 [10:08<23:05, 1.61s/it]
|
400 |
31%|███ | 390/1250 [10:10<22:56, 1.60s/it]
|
401 |
31%|███▏ | 391/1250 [10:11<22:10, 1.55s/it]
|
402 |
31%|███▏ | 392/1250 [10:12<20:33, 1.44s/it]
|
403 |
31%|███▏ | 393/1250 [10:13<18:37, 1.30s/it]
|
404 |
32%|███▏ | 394/1250 [10:16<23:25, 1.64s/it]
|
405 |
32%|███▏ | 395/1250 [10:18<23:45, 1.67s/it]
|
406 |
32%|███▏ | 396/1250 [10:19<23:08, 1.63s/it]
|
407 |
32%|███▏ | 397/1250 [10:20<21:55, 1.54s/it]
|
408 |
32%|███▏ | 398/1250 [10:22<20:16, 1.43s/it]
|
409 |
32%|███▏ | 399/1250 [10:23<18:21, 1.29s/it]
|
410 |
32%|███▏ | 400/1250 [10:24<20:34, 1.45s/it]
|
411 |
|
412 |
32%|███▏ | 400/1250 [10:24<20:34, 1.45s/it]
|
413 |
32%|███▏ | 401/1250 [10:27<26:02, 1.84s/it]
|
414 |
32%|███▏ | 402/1250 [10:29<25:43, 1.82s/it]
|
415 |
32%|███▏ | 403/1250 [10:31<24:36, 1.74s/it]
|
416 |
32%|███▏ | 404/1250 [10:32<22:58, 1.63s/it]
|
417 |
32%|███▏ | 405/1250 [10:33<21:12, 1.51s/it]
|
418 |
32%|███▏ | 406/1250 [10:34<19:08, 1.36s/it]
|
419 |
33%|███▎ | 407/1250 [10:37<23:55, 1.70s/it]
|
420 |
33%|███▎ | 408/1250 [10:38<24:11, 1.72s/it]
|
421 |
33%|███▎ | 409/1250 [10:40<23:27, 1.67s/it]
|
422 |
33%|███▎ | 410/1250 [10:41<22:04, 1.58s/it]
|
423 |
33%|███▎ | 411/1250 [10:42<20:25, 1.46s/it]
|
424 |
33%|███▎ | 412/1250 [10:43<18:26, 1.32s/it]
|
425 |
33%|███▎ | 413/1250 [10:46<22:59, 1.65s/it]
|
426 |
33%|███▎ | 414/1250 [10:48<23:20, 1.68s/it]
|
427 |
33%|███▎ | 415/1250 [10:49<22:33, 1.62s/it]
|
428 |
33%|███▎ | 416/1250 [10:50<21:15, 1.53s/it]
|
429 |
33%|███▎ | 417/1250 [10:52<19:25, 1.40s/it]
|
430 |
33%|███▎ | 418/1250 [10:52<17:26, 1.26s/it]
|
431 |
34%|███▎ | 419/1250 [10:55<21:48, 1.57s/it]
|
432 |
34%|███▎ | 420/1250 [10:56<22:18, 1.61s/it]
|
433 |
34%|███▎ | 421/1250 [10:58<21:51, 1.58s/it]
|
434 |
34%|███▍ | 422/1250 [10:59<21:12, 1.54s/it]
|
435 |
34%|███▍ | 423/1250 [11:01<19:59, 1.45s/it]
|
436 |
34%|███▍ | 424/1250 [11:02<18:08, 1.32s/it]
|
437 |
34%|███▍ | 425/1250 [11:03<19:17, 1.40s/it]
|
438 |
34%|███▍ | 426/1250 [11:06<25:20, 1.85s/it]
|
439 |
34%|███▍ | 427/1250 [11:08<24:54, 1.82s/it]
|
440 |
34%|███▍ | 428/1250 [11:09<23:45, 1.73s/it]
|
441 |
34%|███▍ | 429/1250 [11:11<22:22, 1.64s/it]
|
442 |
34%|███▍ | 430/1250 [11:12<20:29, 1.50s/it]
|
443 |
34%|███▍ | 431/1250 [11:13<18:27, 1.35s/it]
|
444 |
35%|███▍ | 432/1250 [11:15<21:54, 1.61s/it]
|
445 |
35%|███▍ | 433/1250 [11:17<22:24, 1.65s/it]
|
446 |
35%|███▍ | 434/1250 [11:18<21:43, 1.60s/it]
|
447 |
35%|███▍ | 435/1250 [11:20<20:37, 1.52s/it]
|
448 |
35%|███▍ | 436/1250 [11:21<19:27, 1.43s/it]
|
449 |
35%|███▍ | 437/1250 [11:22<17:33, 1.30s/it]
|
450 |
35%|███▌ | 438/1250 [11:24<21:45, 1.61s/it]
|
451 |
35%|███▌ | 439/1250 [11:26<22:22, 1.65s/it]
|
452 |
35%|███▌ | 440/1250 [11:28<21:56, 1.62s/it]
|
453 |
35%|███▌ | 441/1250 [11:29<21:01, 1.56s/it]
|
454 |
35%|███▌ | 442/1250 [11:30<19:33, 1.45s/it]
|
455 |
35%|███▌ | 443/1250 [11:31<17:42, 1.32s/it]
|
456 |
36%|███▌ | 444/1250 [11:34<22:11, 1.65s/it]
|
457 |
36%|███▌ | 445/1250 [11:35<22:31, 1.68s/it]
|
458 |
36%|███▌ | 446/1250 [11:37<22:06, 1.65s/it]
|
459 |
36%|███▌ | 447/1250 [11:38<20:52, 1.56s/it]
|
460 |
36%|███▌ | 448/1250 [11:40<19:07, 1.43s/it]
|
461 |
36%|███▌ | 449/1250 [11:40<17:11, 1.29s/it]
|
462 |
36%|███▌ | 450/1250 [11:42<18:49, 1.41s/it]
|
463 |
36%|███▌ | 451/1250 [11:45<24:40, 1.85s/it]
|
464 |
36%|███▌ | 452/1250 [11:47<24:24, 1.84s/it]
|
465 |
36%|███▌ | 453/1250 [11:48<23:15, 1.75s/it]
|
466 |
36%|███▋ | 454/1250 [11:50<21:50, 1.65s/it]
|
467 |
36%|███▋ | 455/1250 [11:51<20:05, 1.52s/it]
|
468 |
36%|███▋ | 456/1250 [11:52<17:55, 1.35s/it]
|
469 |
37%|███▋ | 457/1250 [11:54<22:22, 1.69s/it]
|
470 |
37%|███▋ | 458/1250 [11:56<22:42, 1.72s/it]
|
471 |
37%|███▋ | 459/1250 [11:58<21:46, 1.65s/it]
|
472 |
37%|███▋ | 460/1250 [11:59<20:25, 1.55s/it]
|
473 |
37%|███▋ | 461/1250 [12:00<18:57, 1.44s/it]
|
474 |
37%|███▋ | 462/1250 [12:01<17:05, 1.30s/it]
|
475 |
37%|███▋ | 463/1250 [12:03<20:37, 1.57s/it]
|
476 |
37%|███▋ | 464/1250 [12:05<21:05, 1.61s/it]
|
477 |
37%|███▋ | 465/1250 [12:07<20:35, 1.57s/it]
|
478 |
37%|███▋ | 466/1250 [12:08<19:39, 1.50s/it]
|
479 |
37%|███▋ | 467/1250 [12:09<18:22, 1.41s/it]
|
480 |
37%|███▋ | 468/1250 [12:10<16:57, 1.30s/it]
|
481 |
38%|███▊ | 469/1250 [12:12<20:46, 1.60s/it]
|
482 |
38%|███▊ | 470/1250 [12:14<21:07, 1.62s/it]
|
483 |
38%|███▊ | 471/1250 [12:16<20:47, 1.60s/it]
|
484 |
38%|███▊ | 472/1250 [12:17<19:43, 1.52s/it]
|
485 |
38%|███▊ | 473/1250 [12:18<18:18, 1.41s/it]
|
486 |
38%|███▊ | 474/1250 [12:19<16:37, 1.29s/it]
|
487 |
38%|███▊ | 475/1250 [12:21<18:49, 1.46s/it]
|
488 |
38%|███▊ | 476/1250 [12:24<24:27, 1.90s/it]
|
489 |
38%|███▊ | 477/1250 [12:26<24:00, 1.86s/it]
|
490 |
38%|███▊ | 478/1250 [12:27<22:39, 1.76s/it]
|
491 |
38%|███▊ | 479/1250 [12:29<21:01, 1.64s/it]
|
492 |
38%|███▊ | 480/1250 [12:30<18:58, 1.48s/it]
|
493 |
38%|███▊ | 481/1250 [12:31<16:44, 1.31s/it]
|
494 |
39%|███▊ | 482/1250 [12:33<20:30, 1.60s/it]
|
495 |
39%|███▊ | 483/1250 [12:35<20:39, 1.62s/it]
|
496 |
39%|███▊ | 484/1250 [12:36<20:30, 1.61s/it]
|
497 |
39%|███▉ | 485/1250 [12:38<19:36, 1.54s/it]
|
498 |
39%|███▉ | 486/1250 [12:39<18:15, 1.43s/it]
|
499 |
39%|███▉ | 487/1250 [12:40<16:37, 1.31s/it]
|
500 |
39%|███▉ | 488/1250 [12:42<20:55, 1.65s/it]
|
501 |
39%|███▉ | 489/1250 [12:44<21:17, 1.68s/it]
|
502 |
39%|███▉ | 490/1250 [12:45<20:34, 1.62s/it]
|
503 |
39%|███▉ | 491/1250 [12:47<19:28, 1.54s/it]
|
504 |
39%|███▉ | 492/1250 [12:48<18:28, 1.46s/it]
|
505 |
39%|███▉ | 493/1250 [12:49<16:39, 1.32s/it]
|
506 |
40%|███▉ | 494/1250 [12:51<20:23, 1.62s/it]
|
507 |
40%|███▉ | 495/1250 [12:53<20:39, 1.64s/it]
|
508 |
40%|███▉ | 496/1250 [12:55<20:11, 1.61s/it]
|
509 |
40%|███▉ | 497/1250 [12:56<19:09, 1.53s/it]
|
510 |
40%|███▉ | 498/1250 [12:57<17:44, 1.42s/it]
|
511 |
40%|███▉ | 499/1250 [12:58<15:57, 1.28s/it]
|
512 |
40%|████ | 500/1250 [13:00<17:17, 1.38s/it]
|
513 |
|
514 |
40%|████ | 500/1250 [13:00<17:17, 1.38s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
0%| | 0/43 [00:00<?, ?it/s][A
|
|
|
516 |
5%|▍ | 2/43 [00:00<00:04, 9.99it/s][A
|
|
|
517 |
7%|▋ | 3/43 [00:00<00:07, 5.48it/s][A
|
|
|
518 |
9%|▉ | 4/43 [00:00<00:09, 4.26it/s][A
|
|
|
519 |
12%|█▏ | 5/43 [00:01<00:09, 4.09it/s][A
|
|
|
520 |
14%|█▍ | 6/43 [00:01<00:09, 3.90it/s][A
|
|
|
521 |
16%|█▋ | 7/43 [00:01<00:09, 3.85it/s][A
|
|
|
522 |
19%|█▊ | 8/43 [00:01<00:09, 3.77it/s][A
|
|
|
523 |
21%|██ | 9/43 [00:02<00:09, 3.47it/s][A
|
|
|
524 |
23%|██▎ | 10/43 [00:02<00:08, 3.74it/s][A
|
|
|
525 |
26%|██▌ | 11/43 [00:02<00:09, 3.54it/s][A
|
|
|
526 |
28%|██▊ | 12/43 [00:03<00:08, 3.77it/s][A
|
|
|
527 |
30%|███ | 13/43 [00:03<00:07, 3.86it/s][A
|
|
|
528 |
33%|███▎ | 14/43 [00:03<00:08, 3.48it/s][A
|
|
|
529 |
35%|███▍ | 15/43 [00:04<00:09, 2.99it/s][A
|
|
|
530 |
37%|███▋ | 16/43 [00:04<00:08, 3.05it/s][A
|
|
|
531 |
40%|███▉ | 17/43 [00:04<00:08, 3.14it/s][A
|
|
|
532 |
42%|████▏ | 18/43 [00:05<00:08, 3.05it/s][A
|
|
|
533 |
44%|████▍ | 19/43 [00:05<00:08, 2.85it/s][A
|
|
|
534 |
47%|████▋ | 20/43 [00:05<00:09, 2.54it/s][A
|
|
|
535 |
49%|████▉ | 21/43 [00:06<00:08, 2.66it/s][A
|
|
|
536 |
51%|█████ | 22/43 [00:06<00:07, 2.70it/s][A
|
|
|
537 |
53%|█████▎ | 23/43 [00:06<00:07, 2.82it/s][A
|
|
|
538 |
56%|█████▌ | 24/43 [00:07<00:06, 3.09it/s][A
|
|
|
539 |
58%|█████▊ | 25/43 [00:07<00:05, 3.22it/s][A
|
|
|
540 |
60%|██████ | 26/43 [00:07<00:05, 3.21it/s][A
|
|
|
541 |
63%|██████▎ | 27/43 [00:07<00:04, 3.59it/s][A
|
|
|
542 |
65%|██████▌ | 28/43 [00:08<00:04, 3.65it/s][A
|
|
|
543 |
67%|██████▋ | 29/43 [00:08<00:03, 3.76it/s][A
|
|
|
544 |
70%|██████▉ | 30/43 [00:08<00:03, 3.83it/s][A
|
|
|
545 |
72%|███████▏ | 31/43 [00:08<00:03, 3.79it/s][A
|
|
|
546 |
74%|███████▍ | 32/43 [00:09<00:02, 3.85it/s][A
|
|
|
547 |
77%|███████▋ | 33/43 [00:09<00:02, 3.54it/s][A
|
|
|
548 |
79%|███████▉ | 34/43 [00:09<00:02, 3.51it/s][A
|
|
|
549 |
81%|████████▏ | 35/43 [00:10<00:02, 3.51it/s][A
|
|
|
550 |
84%|████████▎ | 36/43 [00:10<00:02, 3.42it/s][A
|
|
|
551 |
86%|████████▌ | 37/43 [00:10<00:01, 3.56it/s][A
|
|
|
552 |
88%|████████▊ | 38/43 [00:11<00:01, 3.32it/s][A
|
|
|
553 |
91%|█████████ | 39/43 [00:11<00:01, 3.38it/s][A
|
|
|
554 |
93%|█████████▎| 40/43 [00:11<00:00, 3.27it/s][A
|
|
|
555 |
95%|█████████▌| 41/43 [00:11<00:00, 3.37it/s][A
|
|
|
556 |
98%|█████████▊| 42/43 [00:12<00:00, 3.19it/s][A
|
|
|
557 |
|
|
|
558 |
|
559 |
40%|████ | 500/1250 [13:13<17:17, 1.38s/it]
|
|
|
|
|
560 |
[ASaving model checkpoint to ./checkpoint-500
|
|
|
|
|
|
|
|
|
|
1 |
+
02/02/2022 18:04:15 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: True
|
2 |
+
02/02/2022 18:04:15 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
|
3 |
+
_n_gpu=1,
|
4 |
+
adafactor=False,
|
5 |
+
adam_beta1=0.9,
|
6 |
+
adam_beta2=0.999,
|
7 |
+
adam_epsilon=1e-08,
|
8 |
+
bf16=False,
|
9 |
+
bf16_full_eval=False,
|
10 |
+
dataloader_drop_last=False,
|
11 |
+
dataloader_num_workers=0,
|
12 |
+
dataloader_pin_memory=True,
|
13 |
+
ddp_bucket_cap_mb=None,
|
14 |
+
ddp_find_unused_parameters=None,
|
15 |
+
debug=[],
|
16 |
+
deepspeed=None,
|
17 |
+
disable_tqdm=False,
|
18 |
+
do_eval=True,
|
19 |
+
do_predict=False,
|
20 |
+
do_train=True,
|
21 |
+
eval_accumulation_steps=None,
|
22 |
+
eval_steps=500,
|
23 |
+
evaluation_strategy=IntervalStrategy.STEPS,
|
24 |
+
fp16=True,
|
25 |
+
fp16_backend=auto,
|
26 |
+
fp16_full_eval=False,
|
27 |
+
fp16_opt_level=O1,
|
28 |
+
gradient_accumulation_steps=4,
|
29 |
+
gradient_checkpointing=True,
|
30 |
+
greater_is_better=None,
|
31 |
+
group_by_length=True,
|
32 |
+
half_precision_backend=auto,
|
33 |
+
hub_model_id=None,
|
34 |
+
hub_strategy=HubStrategy.EVERY_SAVE,
|
35 |
+
hub_token=<HUB_TOKEN>,
|
36 |
+
ignore_data_skip=False,
|
37 |
+
label_names=None,
|
38 |
+
label_smoothing_factor=0.0,
|
39 |
+
learning_rate=7.5e-05,
|
40 |
+
length_column_name=input_length,
|
41 |
+
load_best_model_at_end=False,
|
42 |
+
local_rank=-1,
|
43 |
+
log_level=-1,
|
44 |
+
log_level_replica=-1,
|
45 |
+
log_on_each_node=True,
|
46 |
+
logging_dir=./runs/Feb02_18-04-15_job-86e1d453-0156-4b77-a98d-7d457c737175,
|
47 |
+
logging_first_step=False,
|
48 |
+
logging_nan_inf_filter=True,
|
49 |
+
logging_steps=100,
|
50 |
+
logging_strategy=IntervalStrategy.STEPS,
|
51 |
+
lr_scheduler_type=SchedulerType.LINEAR,
|
52 |
+
max_grad_norm=1.0,
|
53 |
+
max_steps=-1,
|
54 |
+
metric_for_best_model=None,
|
55 |
+
mp_parameters=,
|
56 |
+
no_cuda=False,
|
57 |
+
num_train_epochs=50.0,
|
58 |
+
optim=OptimizerNames.ADAMW_HF,
|
59 |
+
output_dir=./,
|
60 |
+
overwrite_output_dir=True,
|
61 |
+
past_index=-1,
|
62 |
+
per_device_eval_batch_size=8,
|
63 |
+
per_device_train_batch_size=8,
|
64 |
+
prediction_loss_only=False,
|
65 |
+
push_to_hub=True,
|
66 |
+
push_to_hub_model_id=None,
|
67 |
+
push_to_hub_organization=None,
|
68 |
+
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
|
69 |
+
remove_unused_columns=True,
|
70 |
+
report_to=[],
|
71 |
+
resume_from_checkpoint=None,
|
72 |
+
run_name=./,
|
73 |
+
save_on_each_node=False,
|
74 |
+
save_steps=500,
|
75 |
+
save_strategy=IntervalStrategy.STEPS,
|
76 |
+
save_total_limit=3,
|
77 |
+
seed=42,
|
78 |
+
sharded_ddp=[],
|
79 |
+
skip_memory_metrics=True,
|
80 |
+
tf32=None,
|
81 |
+
tpu_metrics_debug=False,
|
82 |
+
tpu_num_cores=None,
|
83 |
+
use_legacy_prediction_loop=False,
|
84 |
+
warmup_ratio=0.0,
|
85 |
+
warmup_steps=2000,
|
86 |
+
weight_decay=0.0,
|
87 |
+
xpu_backend=None,
|
88 |
+
)
|
89 |
+
02/02/2022 18:04:18 - WARNING - datasets.builder - Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/ur/8.0.0/b8bc4d453193c06a43269b46cd87f075c70f152ac963b7f28f7a2760c45ec3e8)
|
90 |
+
02/02/2022 18:04:20 - WARNING - datasets.builder - Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/ur/8.0.0/b8bc4d453193c06a43269b46cd87f075c70f152ac963b7f28f7a2760c45ec3e8)
|
91 |
+
02/02/2022 18:04:20 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/ur/8.0.0/b8bc4d453193c06a43269b46cd87f075c70f152ac963b7f28f7a2760c45ec3e8/cache-eefb1dcecdbc6361.arrow
|
92 |
+
02/02/2022 18:04:20 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/ur/8.0.0/b8bc4d453193c06a43269b46cd87f075c70f152ac963b7f28f7a2760c45ec3e8/cache-bebf53ae59038f0e.arrow
|
93 |
+
loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6
|
94 |
+
Model config Wav2Vec2Config {
|
95 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
96 |
+
"activation_dropout": 0.0,
|
97 |
+
"adapter_kernel_size": 3,
|
98 |
+
"adapter_stride": 2,
|
99 |
+
"add_adapter": false,
|
100 |
+
"apply_spec_augment": true,
|
101 |
+
"architectures": [
|
102 |
+
"Wav2Vec2ForPreTraining"
|
103 |
+
],
|
104 |
+
"attention_dropout": 0.1,
|
105 |
+
"bos_token_id": 1,
|
106 |
+
"classifier_proj_size": 256,
|
107 |
+
"codevector_dim": 768,
|
108 |
+
"contrastive_logits_temperature": 0.1,
|
109 |
+
"conv_bias": true,
|
110 |
+
"conv_dim": [
|
111 |
+
512,
|
112 |
+
512,
|
113 |
+
512,
|
114 |
+
512,
|
115 |
+
512,
|
116 |
+
512,
|
117 |
+
512
|
118 |
+
],
|
119 |
+
"conv_kernel": [
|
120 |
+
10,
|
121 |
+
3,
|
122 |
+
3,
|
123 |
+
3,
|
124 |
+
3,
|
125 |
+
2,
|
126 |
+
2
|
127 |
+
],
|
128 |
+
"conv_stride": [
|
129 |
+
5,
|
130 |
+
2,
|
131 |
+
2,
|
132 |
+
2,
|
133 |
+
2,
|
134 |
+
2,
|
135 |
+
2
|
136 |
+
],
|
137 |
+
"ctc_loss_reduction": "sum",
|
138 |
+
"ctc_zero_infinity": false,
|
139 |
+
"diversity_loss_weight": 0.1,
|
140 |
+
"do_stable_layer_norm": true,
|
141 |
+
"eos_token_id": 2,
|
142 |
+
"feat_extract_activation": "gelu",
|
143 |
+
"feat_extract_dropout": 0.0,
|
144 |
+
"feat_extract_norm": "layer",
|
145 |
+
"feat_proj_dropout": 0.1,
|
146 |
+
"feat_quantizer_dropout": 0.0,
|
147 |
+
"final_dropout": 0.0,
|
148 |
+
"gradient_checkpointing": false,
|
149 |
+
"hidden_act": "gelu",
|
150 |
+
"hidden_dropout": 0.1,
|
151 |
+
"hidden_size": 1024,
|
152 |
+
"initializer_range": 0.02,
|
153 |
+
"intermediate_size": 4096,
|
154 |
+
"layer_norm_eps": 1e-05,
|
155 |
+
"layerdrop": 0.1,
|
156 |
+
"mask_feature_length": 10,
|
157 |
+
"mask_feature_min_masks": 0,
|
158 |
+
"mask_feature_prob": 0.0,
|
159 |
+
"mask_time_length": 10,
|
160 |
+
"mask_time_min_masks": 2,
|
161 |
+
"mask_time_prob": 0.075,
|
162 |
+
"model_type": "wav2vec2",
|
163 |
+
"num_adapter_layers": 3,
|
164 |
+
"num_attention_heads": 16,
|
165 |
+
"num_codevector_groups": 2,
|
166 |
+
"num_codevectors_per_group": 320,
|
167 |
+
"num_conv_pos_embedding_groups": 16,
|
168 |
+
"num_conv_pos_embeddings": 128,
|
169 |
+
"num_feat_extract_layers": 7,
|
170 |
+
"num_hidden_layers": 24,
|
171 |
+
"num_negatives": 100,
|
172 |
+
"output_hidden_size": 1024,
|
173 |
+
"pad_token_id": 0,
|
174 |
+
"proj_codevector_dim": 768,
|
175 |
+
"tdnn_dilation": [
|
176 |
+
1,
|
177 |
+
2,
|
178 |
+
3,
|
179 |
+
1,
|
180 |
+
1
|
181 |
+
],
|
182 |
+
"tdnn_dim": [
|
183 |
+
512,
|
184 |
+
512,
|
185 |
+
512,
|
186 |
+
512,
|
187 |
+
1500
|
188 |
+
],
|
189 |
+
"tdnn_kernel": [
|
190 |
+
5,
|
191 |
+
3,
|
192 |
+
3,
|
193 |
+
1,
|
194 |
+
1
|
195 |
+
],
|
196 |
+
"torch_dtype": "float32",
|
197 |
+
"transformers_version": "4.17.0.dev0",
|
198 |
+
"use_weighted_layer_sum": false,
|
199 |
+
"vocab_size": 32,
|
200 |
+
"xvector_output_dim": 512
|
201 |
+
}
|
202 |
+
|
203 |
+
|
204 |
0%| | 0/1 [00:00<?, ?ba/s]
|
205 |
+
|
206 |
0%| | 0/1 [00:00<?, ?ba/s]
|
207 |
+
Didn't find file ./tokenizer.json. We won't load it.
|
208 |
+
loading file ./vocab.json
|
209 |
+
loading file ./tokenizer_config.json
|
210 |
+
loading file ./added_tokens.json
|
211 |
+
loading file ./special_tokens_map.json
|
212 |
+
loading file None
|
213 |
+
Adding <s> to the vocabulary
|
214 |
+
Adding </s> to the vocabulary
|
215 |
+
loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6
|
216 |
+
Model config Wav2Vec2Config {
|
217 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
218 |
+
"activation_dropout": 0.0,
|
219 |
+
"adapter_kernel_size": 3,
|
220 |
+
"adapter_stride": 2,
|
221 |
+
"add_adapter": false,
|
222 |
+
"apply_spec_augment": true,
|
223 |
+
"architectures": [
|
224 |
+
"Wav2Vec2ForPreTraining"
|
225 |
+
],
|
226 |
+
"attention_dropout": 0.1,
|
227 |
+
"bos_token_id": 1,
|
228 |
+
"classifier_proj_size": 256,
|
229 |
+
"codevector_dim": 768,
|
230 |
+
"contrastive_logits_temperature": 0.1,
|
231 |
+
"conv_bias": true,
|
232 |
+
"conv_dim": [
|
233 |
+
512,
|
234 |
+
512,
|
235 |
+
512,
|
236 |
+
512,
|
237 |
+
512,
|
238 |
+
512,
|
239 |
+
512
|
240 |
+
],
|
241 |
+
"conv_kernel": [
|
242 |
+
10,
|
243 |
+
3,
|
244 |
+
3,
|
245 |
+
3,
|
246 |
+
3,
|
247 |
+
2,
|
248 |
+
2
|
249 |
+
],
|
250 |
+
"conv_stride": [
|
251 |
+
5,
|
252 |
+
2,
|
253 |
+
2,
|
254 |
+
2,
|
255 |
+
2,
|
256 |
+
2,
|
257 |
+
2
|
258 |
+
],
|
259 |
+
"ctc_loss_reduction": "sum",
|
260 |
+
"ctc_zero_infinity": false,
|
261 |
+
"diversity_loss_weight": 0.1,
|
262 |
+
"do_stable_layer_norm": true,
|
263 |
+
"eos_token_id": 2,
|
264 |
+
"feat_extract_activation": "gelu",
|
265 |
+
"feat_extract_dropout": 0.0,
|
266 |
+
"feat_extract_norm": "layer",
|
267 |
+
"feat_proj_dropout": 0.1,
|
268 |
+
"feat_quantizer_dropout": 0.0,
|
269 |
+
"final_dropout": 0.0,
|
270 |
+
"gradient_checkpointing": false,
|
271 |
+
"hidden_act": "gelu",
|
272 |
+
"hidden_dropout": 0.1,
|
273 |
+
"hidden_size": 1024,
|
274 |
+
"initializer_range": 0.02,
|
275 |
+
"intermediate_size": 4096,
|
276 |
+
"layer_norm_eps": 1e-05,
|
277 |
+
"layerdrop": 0.1,
|
278 |
+
"mask_feature_length": 10,
|
279 |
+
"mask_feature_min_masks": 0,
|
280 |
+
"mask_feature_prob": 0.0,
|
281 |
+
"mask_time_length": 10,
|
282 |
+
"mask_time_min_masks": 2,
|
283 |
+
"mask_time_prob": 0.075,
|
284 |
+
"model_type": "wav2vec2",
|
285 |
+
"num_adapter_layers": 3,
|
286 |
+
"num_attention_heads": 16,
|
287 |
+
"num_codevector_groups": 2,
|
288 |
+
"num_codevectors_per_group": 320,
|
289 |
+
"num_conv_pos_embedding_groups": 16,
|
290 |
+
"num_conv_pos_embeddings": 128,
|
291 |
+
"num_feat_extract_layers": 7,
|
292 |
+
"num_hidden_layers": 24,
|
293 |
+
"num_negatives": 100,
|
294 |
+
"output_hidden_size": 1024,
|
295 |
+
"pad_token_id": 0,
|
296 |
+
"proj_codevector_dim": 768,
|
297 |
+
"tdnn_dilation": [
|
298 |
+
1,
|
299 |
+
2,
|
300 |
+
3,
|
301 |
+
1,
|
302 |
+
1
|
303 |
+
],
|
304 |
+
"tdnn_dim": [
|
305 |
+
512,
|
306 |
+
512,
|
307 |
+
512,
|
308 |
+
512,
|
309 |
+
1500
|
310 |
+
],
|
311 |
+
"tdnn_kernel": [
|
312 |
+
5,
|
313 |
+
3,
|
314 |
+
3,
|
315 |
+
1,
|
316 |
+
1
|
317 |
+
],
|
318 |
+
"torch_dtype": "float32",
|
319 |
+
"transformers_version": "4.17.0.dev0",
|
320 |
+
"use_weighted_layer_sum": false,
|
321 |
+
"vocab_size": 32,
|
322 |
+
"xvector_output_dim": 512
|
323 |
+
}
|
324 |
+
|
325 |
+
loading feature extractor configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/preprocessor_config.json from cache at /workspace/.cache/huggingface/transformers/6fb028b95b394059e7d3b367bbca2382b576c66aebe896f04d2cd34e1b575f5b.d4484dc1c81456a2461485e7168b04347a7b9a4e3b1ef3aba723323b33e12326
|
326 |
+
Feature extractor Wav2Vec2FeatureExtractor {
|
327 |
+
"do_normalize": true,
|
328 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
329 |
+
"feature_size": 1,
|
330 |
+
"padding_side": "right",
|
331 |
+
"padding_value": 0,
|
332 |
+
"return_attention_mask": true,
|
333 |
+
"sampling_rate": 16000
|
334 |
+
}
|
335 |
+
|
336 |
+
loading weights file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/pytorch_model.bin from cache at /workspace/.cache/huggingface/transformers/1e6a6507f3b689035cd4b247e2a37c154e27f39143f31357a49b4e38baeccc36.1edb32803799e27ed554eb7dd935f6745b1a0b17b0ea256442fe24db6eb546cd
|
337 |
+
Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['quantizer.weight_proj.weight', 'quantizer.codevectors', 'quantizer.weight_proj.bias', 'project_q.bias', 'project_q.weight', 'project_hid.bias', 'project_hid.weight']
|
338 |
+
- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
|
339 |
+
- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
|
340 |
+
Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.weight', 'lm_head.bias']
|
341 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
0%| | 0/1 [00:00<?, ?ba/s]
|
346 |
+
|
347 |
0%| | 0/1 [00:00<?, ?ba/s]
|
348 |
+
Configuration saved in ./preprocessor_config.json
|
349 |
+
tokenizer config file saved in ./tokenizer_config.json
|
350 |
+
Special tokens file saved in ./special_tokens_map.json
|
351 |
+
added tokens file saved in ./added_tokens.json
|
352 |
+
Configuration saved in ./config.json
|
353 |
+
loading feature extractor configuration file ./preprocessor_config.json
|
354 |
+
loading configuration file ./config.json
|
355 |
+
Model config Wav2Vec2Config {
|
356 |
+
"_name_or_path": "./",
|
357 |
+
"activation_dropout": 0.1,
|
358 |
+
"adapter_kernel_size": 3,
|
359 |
+
"adapter_stride": 2,
|
360 |
+
"add_adapter": false,
|
361 |
+
"apply_spec_augment": true,
|
362 |
+
"architectures": [
|
363 |
+
"Wav2Vec2ForPreTraining"
|
364 |
+
],
|
365 |
+
"attention_dropout": 0.0,
|
366 |
+
"bos_token_id": 1,
|
367 |
+
"classifier_proj_size": 256,
|
368 |
+
"codevector_dim": 768,
|
369 |
+
"contrastive_logits_temperature": 0.1,
|
370 |
+
"conv_bias": true,
|
371 |
+
"conv_dim": [
|
372 |
+
512,
|
373 |
+
512,
|
374 |
+
512,
|
375 |
+
512,
|
376 |
+
512,
|
377 |
+
512,
|
378 |
+
512
|
379 |
+
],
|
380 |
+
"conv_kernel": [
|
381 |
+
10,
|
382 |
+
3,
|
383 |
+
3,
|
384 |
+
3,
|
385 |
+
3,
|
386 |
+
2,
|
387 |
+
2
|
388 |
+
],
|
389 |
+
"conv_stride": [
|
390 |
+
5,
|
391 |
+
2,
|
392 |
+
2,
|
393 |
+
2,
|
394 |
+
2,
|
395 |
+
2,
|
396 |
+
2
|
397 |
+
],
|
398 |
+
"ctc_loss_reduction": "mean",
|
399 |
+
"ctc_zero_infinity": false,
|
400 |
+
"diversity_loss_weight": 0.1,
|
401 |
+
"do_stable_layer_norm": true,
|
402 |
+
"eos_token_id": 2,
|
403 |
+
"feat_extract_activation": "gelu",
|
404 |
+
"feat_extract_dropout": 0.0,
|
405 |
+
"feat_extract_norm": "layer",
|
406 |
+
"feat_proj_dropout": 0.0,
|
407 |
+
"feat_quantizer_dropout": 0.0,
|
408 |
+
"final_dropout": 0.0,
|
409 |
+
"hidden_act": "gelu",
|
410 |
+
"hidden_dropout": 0.0,
|
411 |
+
"hidden_size": 1024,
|
412 |
+
"initializer_range": 0.02,
|
413 |
+
"intermediate_size": 4096,
|
414 |
+
"layer_norm_eps": 1e-05,
|
415 |
+
"layerdrop": 0.0,
|
416 |
+
"mask_feature_length": 64,
|
417 |
+
"mask_feature_min_masks": 0,
|
418 |
+
"mask_feature_prob": 0.25,
|
419 |
+
"mask_time_length": 10,
|
420 |
+
"mask_time_min_masks": 2,
|
421 |
+
"mask_time_prob": 0.75,
|
422 |
+
"model_type": "wav2vec2",
|
423 |
+
"num_adapter_layers": 3,
|
424 |
+
"num_attention_heads": 16,
|
425 |
+
"num_codevector_groups": 2,
|
426 |
+
"num_codevectors_per_group": 320,
|
427 |
+
"num_conv_pos_embedding_groups": 16,
|
428 |
+
"num_conv_pos_embeddings": 128,
|
429 |
+
"num_feat_extract_layers": 7,
|
430 |
+
"num_hidden_layers": 24,
|
431 |
+
"num_negatives": 100,
|
432 |
+
"output_hidden_size": 1024,
|
433 |
+
"pad_token_id": 58,
|
434 |
+
"proj_codevector_dim": 768,
|
435 |
+
"tdnn_dilation": [
|
436 |
+
1,
|
437 |
+
2,
|
438 |
+
3,
|
439 |
+
1,
|
440 |
+
1
|
441 |
+
],
|
442 |
+
"tdnn_dim": [
|
443 |
+
512,
|
444 |
+
512,
|
445 |
+
512,
|
446 |
+
512,
|
447 |
+
1500
|
448 |
+
],
|
449 |
+
"tdnn_kernel": [
|
450 |
+
5,
|
451 |
+
3,
|
452 |
+
3,
|
453 |
+
1,
|
454 |
+
1
|
455 |
+
],
|
456 |
+
"torch_dtype": "float32",
|
457 |
+
"transformers_version": "4.17.0.dev0",
|
458 |
+
"use_weighted_layer_sum": false,
|
459 |
+
"vocab_size": 61,
|
460 |
+
"xvector_output_dim": 512
|
461 |
+
}
|
462 |
+
|
463 |
+
loading feature extractor configuration file ./preprocessor_config.json
|
464 |
+
Feature extractor Wav2Vec2FeatureExtractor {
|
465 |
+
"do_normalize": true,
|
466 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
467 |
+
"feature_size": 1,
|
468 |
+
"padding_side": "right",
|
469 |
+
"padding_value": 0,
|
470 |
+
"return_attention_mask": true,
|
471 |
+
"sampling_rate": 16000
|
472 |
+
}
|
473 |
+
|
474 |
+
Didn't find file ./tokenizer.json. We won't load it.
|
475 |
+
loading file ./vocab.json
|
476 |
+
loading file ./tokenizer_config.json
|
477 |
+
loading file ./added_tokens.json
|
478 |
+
loading file ./special_tokens_map.json
|
479 |
+
loading file None
|
480 |
+
Adding <s> to the vocabulary
|
481 |
+
Adding </s> to the vocabulary
|
482 |
+
/workspace/xls-r-300m-ur/./ is already a clone of https://huggingface.co/HarrisDePerceptron/xls-r-300m-ur. Make sure you pull the latest changes with `repo.git_pull()`.
|
483 |
+
02/02/2022 18:04:42 - WARNING - huggingface_hub.repository - /workspace/xls-r-300m-ur/./ is already a clone of https://huggingface.co/HarrisDePerceptron/xls-r-300m-ur. Make sure you pull the latest changes with `repo.git_pull()`.
|
484 |
+
Using amp half precision backend
|
485 |
+
The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
|
486 |
+
/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
|
487 |
+
warnings.warn(
|
488 |
+
***** Running training *****
|
489 |
+
Num examples = 810
|
490 |
+
Num Epochs = 50
|
491 |
+
Instantaneous batch size per device = 8
|
492 |
+
Total train batch size (w. parallel, distributed & accumulation) = 32
|
493 |
+
Gradient Accumulation steps = 4
|
494 |
+
Total optimization steps = 1250
|
495 |
+
|
496 |
0%| | 0/1250 [00:00<?, ?it/s]
|
497 |
0%| | 1/1250 [00:02<53:39, 2.58s/it]
|
498 |
0%| | 2/1250 [00:04<43:18, 2.08s/it]
|
499 |
0%| | 3/1250 [00:05<37:42, 1.81s/it]
|
500 |
0%| | 4/1250 [00:07<34:12, 1.65s/it]
|
501 |
0%| | 5/1250 [00:08<31:07, 1.50s/it]
|
502 |
0%| | 6/1250 [00:09<27:31, 1.33s/it]
|
503 |
1%| | 7/1250 [00:11<35:11, 1.70s/it]
|
504 |
1%| | 8/1250 [00:13<35:39, 1.72s/it]
|
505 |
1%| | 9/1250 [00:15<34:52, 1.69s/it]
|
506 |
1%| | 10/1250 [00:16<33:13, 1.61s/it]
|
507 |
1%| | 11/1250 [00:17<30:26, 1.47s/it]
|
508 |
1%| | 12/1250 [00:18<27:37, 1.34s/it]
|
509 |
1%| | 13/1250 [00:21<34:42, 1.68s/it]
|
510 |
1%| | 14/1250 [00:23<34:49, 1.69s/it]
|
511 |
1%| | 15/1250 [00:24<34:04, 1.66s/it]
|
512 |
1%|▏ | 16/1250 [00:26<32:22, 1.57s/it]
|
513 |
1%|▏ | 17/1250 [00:27<29:57, 1.46s/it]
|
514 |
1%|▏ | 18/1250 [00:28<26:57, 1.31s/it]
|
515 |
2%|▏ | 19/1250 [00:30<32:14, 1.57s/it]
|
516 |
2%|▏ | 20/1250 [00:32<32:52, 1.60s/it]
|
517 |
2%|▏ | 21/1250 [00:33<32:10, 1.57s/it]
|
518 |
2%|▏ | 22/1250 [00:34<30:44, 1.50s/it]
|
519 |
2%|▏ | 23/1250 [00:36<28:38, 1.40s/it]
|
520 |
2%|▏ | 24/1250 [00:37<26:12, 1.28s/it]
|
521 |
2%|▏ | 25/1250 [00:38<28:56, 1.42s/it]
|
522 |
2%|▏ | 26/1250 [00:41<38:28, 1.89s/it]
|
523 |
2%|▏ | 27/1250 [00:43<37:43, 1.85s/it]
|
524 |
2%|▏ | 28/1250 [00:45<35:59, 1.77s/it]
|
525 |
2%|▏ | 29/1250 [00:46<33:21, 1.64s/it]
|
526 |
2%|▏ | 30/1250 [00:47<30:47, 1.51s/it]
|
527 |
2%|▏ | 31/1250 [00:48<27:31, 1.36s/it]
|
528 |
3%|▎ | 32/1250 [00:51<33:43, 1.66s/it]
|
529 |
3%|▎ | 33/1250 [00:52<34:25, 1.70s/it]
|
530 |
3%|▎ | 34/1250 [00:54<33:34, 1.66s/it]
|
531 |
3%|▎ | 35/1250 [00:55<31:55, 1.58s/it]
|
532 |
3%|▎ | 36/1250 [00:56<29:40, 1.47s/it]
|
533 |
3%|▎ | 37/1250 [00:58<26:54, 1.33s/it]
|
534 |
3%|▎ | 38/1250 [01:00<33:02, 1.64s/it]
|
535 |
3%|▎ | 39/1250 [01:02<33:43, 1.67s/it]
|
536 |
3%|▎ | 40/1250 [01:03<32:32, 1.61s/it]
|
537 |
3%|▎ | 41/1250 [01:04<30:50, 1.53s/it]
|
538 |
3%|▎ | 42/1250 [01:06<28:27, 1.41s/it]
|
539 |
3%|▎ | 43/1250 [01:07<25:45, 1.28s/it]
|
540 |
4%|▎ | 44/1250 [01:09<31:31, 1.57s/it]
|
541 |
4%|▎ | 45/1250 [01:10<32:20, 1.61s/it]
|
542 |
4%|▎ | 46/1250 [01:12<31:58, 1.59s/it]
|
543 |
4%|▍ | 47/1250 [01:13<30:42, 1.53s/it]
|
544 |
4%|▍ | 48/1250 [01:15<28:46, 1.44s/it]
|
545 |
4%|▍ | 49/1250 [01:16<26:22, 1.32s/it]
|
546 |
4%|▍ | 50/1250 [01:17<29:12, 1.46s/it]
|
547 |
4%|▍ | 51/1250 [01:20<37:20, 1.87s/it]
|
548 |
4%|▍ | 52/1250 [01:22<36:38, 1.83s/it]
|
549 |
4%|▍ | 53/1250 [01:24<35:02, 1.76s/it]
|
550 |
4%|▍ | 54/1250 [01:25<32:55, 1.65s/it]
|
551 |
4%|▍ | 55/1250 [01:26<30:10, 1.51s/it]
|
552 |
4%|▍ | 56/1250 [01:27<26:59, 1.36s/it]
|
553 |
5%|▍ | 57/1250 [01:29<32:08, 1.62s/it]
|
554 |
5%|▍ | 58/1250 [01:31<32:44, 1.65s/it]
|
555 |
5%|▍ | 59/1250 [01:33<31:55, 1.61s/it]
|
556 |
5%|▍ | 60/1250 [01:34<30:25, 1.53s/it]
|
557 |
5%|▍ | 61/1250 [01:35<28:26, 1.44s/it]
|
558 |
5%|▍ | 62/1250 [01:36<26:14, 1.33s/it]
|
559 |
5%|▌ | 63/1250 [01:39<32:19, 1.63s/it]
|
560 |
5%|▌ | 64/1250 [01:40<33:12, 1.68s/it]
|
561 |
5%|▌ | 65/1250 [01:42<32:10, 1.63s/it]
|
562 |
5%|▌ | 66/1250 [01:43<30:43, 1.56s/it]
|
563 |
5%|▌ | 67/1250 [01:45<28:35, 1.45s/it]
|
564 |
5%|▌ | 68/1250 [01:46<25:57, 1.32s/it]
|
565 |
6%|▌ | 69/1250 [01:48<33:24, 1.70s/it]
|
566 |
6%|▌ | 70/1250 [01:50<34:10, 1.74s/it]
|
567 |
6%|▌ | 71/1250 [01:51<32:41, 1.66s/it]
|
568 |
6%|▌ | 72/1250 [01:53<30:43, 1.57s/it]
|
569 |
6%|▌ | 73/1250 [01:54<28:32, 1.46s/it]
|
570 |
6%|▌ | 74/1250 [01:55<25:40, 1.31s/it]
|
571 |
6%|▌ | 75/1250 [01:57<28:23, 1.45s/it]
|
572 |
6%|▌ | 76/1250 [02:00<37:02, 1.89s/it]
|
573 |
6%|▌ | 77/1250 [02:01<36:23, 1.86s/it]
|
574 |
6%|▌ | 78/1250 [02:03<34:41, 1.78s/it]
|
575 |
6%|▋ | 79/1250 [02:04<32:21, 1.66s/it]
|
576 |
6%|▋ | 80/1250 [02:06<29:42, 1.52s/it]
|
577 |
6%|▋ | 81/1250 [02:07<26:30, 1.36s/it]
|
578 |
7%|▋ | 82/1250 [02:09<32:23, 1.66s/it]
|
579 |
7%|▋ | 83/1250 [02:11<32:49, 1.69s/it]
|
580 |
7%|▋ | 84/1250 [02:12<31:56, 1.64s/it]
|
581 |
7%|▋ | 85/1250 [02:14<30:09, 1.55s/it]
|
582 |
7%|▋ | 86/1250 [02:15<27:51, 1.44s/it]
|
583 |
7%|▋ | 87/1250 [02:16<25:16, 1.30s/it]
|
584 |
7%|▋ | 88/1250 [02:18<32:07, 1.66s/it]
|
585 |
7%|▋ | 89/1250 [02:20<32:48, 1.70s/it]
|
586 |
7%|▋ | 90/1250 [02:22<31:43, 1.64s/it]
|
587 |
7%|▋ | 91/1250 [02:23<30:21, 1.57s/it]
|
588 |
7%|▋ | 92/1250 [02:24<28:26, 1.47s/it]
|
589 |
7%|▋ | 93/1250 [02:25<26:29, 1.37s/it]
|
590 |
8%|▊ | 94/1250 [02:28<31:23, 1.63s/it]
|
591 |
8%|▊ | 95/1250 [02:29<31:51, 1.66s/it]
|
592 |
8%|▊ | 96/1250 [02:31<30:50, 1.60s/it]
|
593 |
8%|▊ | 97/1250 [02:32<29:30, 1.54s/it]
|
594 |
8%|▊ | 98/1250 [02:33<27:25, 1.43s/it]
|
595 |
8%|▊ | 99/1250 [02:34<24:44, 1.29s/it]
|
596 |
8%|▊ | 100/1250 [02:36<26:59, 1.41s/it]
|
597 |
|
598 |
8%|▊ | 100/1250 [02:36<26:59, 1.41s/it]
|
599 |
8%|▊ | 101/1250 [02:39<35:08, 1.84s/it]
|
600 |
8%|▊ | 102/1250 [02:41<34:28, 1.80s/it]
|
601 |
8%|▊ | 103/1250 [02:42<32:30, 1.70s/it]
|
602 |
8%|▊ | 104/1250 [02:43<30:05, 1.58s/it]
|
603 |
8%|▊ | 105/1250 [02:44<27:37, 1.45s/it]
|
604 |
8%|▊ | 106/1250 [02:45<24:44, 1.30s/it]
|
605 |
9%|▊ | 107/1250 [02:48<30:38, 1.61s/it]
|
606 |
9%|▊ | 108/1250 [02:49<31:24, 1.65s/it]
|
607 |
9%|▊ | 109/1250 [02:51<30:45, 1.62s/it]
|
608 |
9%|▉ | 110/1250 [02:52<29:22, 1.55s/it]
|
609 |
9%|▉ | 111/1250 [02:54<27:20, 1.44s/it]
|
610 |
9%|▉ | 112/1250 [02:55<24:41, 1.30s/it]
|
611 |
9%|▉ | 113/1250 [02:57<29:34, 1.56s/it]
|
612 |
9%|▉ | 114/1250 [02:58<30:11, 1.59s/it]
|
613 |
9%|▉ | 115/1250 [03:00<29:50, 1.58s/it]
|
614 |
9%|▉ | 116/1250 [03:01<28:49, 1.53s/it]
|
615 |
9%|▉ | 117/1250 [03:03<26:52, 1.42s/it]
|
616 |
9%|▉ | 118/1250 [03:04<24:25, 1.29s/it]
|
617 |
10%|▉ | 119/1250 [03:06<30:27, 1.62s/it]
|
618 |
10%|▉ | 120/1250 [03:08<31:40, 1.68s/it]
|
619 |
10%|▉ | 121/1250 [03:09<30:52, 1.64s/it]
|
620 |
10%|▉ | 122/1250 [03:11<29:20, 1.56s/it]
|
621 |
10%|▉ | 123/1250 [03:12<27:11, 1.45s/it]
|
622 |
10%|▉ | 124/1250 [03:13<24:31, 1.31s/it]
|
623 |
10%|█ | 125/1250 [03:15<28:39, 1.53s/it]
|
624 |
10%|█ | 126/1250 [03:18<36:45, 1.96s/it]
|
625 |
10%|█ | 127/1250 [03:20<35:48, 1.91s/it]
|
626 |
10%|█ | 128/1250 [03:21<33:48, 1.81s/it]
|
627 |
10%|█ | 129/1250 [03:23<31:32, 1.69s/it]
|
628 |
10%|█ | 130/1250 [03:24<28:58, 1.55s/it]
|
629 |
10%|█ | 131/1250 [03:25<25:53, 1.39s/it]
|
630 |
11%|█ | 132/1250 [03:27<31:02, 1.67s/it]
|
631 |
11%|█ | 133/1250 [03:29<31:42, 1.70s/it]
|
632 |
11%|█ | 134/1250 [03:30<30:44, 1.65s/it]
|
633 |
11%|█ | 135/1250 [03:32<29:06, 1.57s/it]
|
634 |
11%|█ | 136/1250 [03:33<26:59, 1.45s/it]
|
635 |
11%|█ | 137/1250 [03:34<24:33, 1.32s/it]
|
636 |
11%|█ | 138/1250 [03:36<30:43, 1.66s/it]
|
637 |
11%|█ | 139/1250 [03:38<31:10, 1.68s/it]
|
638 |
11%|█ | 140/1250 [03:40<30:34, 1.65s/it]
|
639 |
11%|█▏ | 141/1250 [03:41<29:08, 1.58s/it]
|
640 |
11%|█▏ | 142/1250 [03:42<26:41, 1.45s/it]
|
641 |
11%|█▏ | 143/1250 [03:43<24:14, 1.31s/it]
|
642 |
12%|█▏ | 144/1250 [03:46<29:19, 1.59s/it]
|
643 |
12%|█▏ | 145/1250 [03:47<29:55, 1.62s/it]
|
644 |
12%|█▏ | 146/1250 [03:49<29:20, 1.59s/it]
|
645 |
12%|█▏ | 147/1250 [03:50<28:09, 1.53s/it]
|
646 |
12%|█▏ | 148/1250 [03:51<26:42, 1.45s/it]
|
647 |
12%|█▏ | 149/1250 [03:52<24:23, 1.33s/it]
|
648 |
12%|█▏ | 150/1250 [03:54<27:24, 1.49s/it]
|
649 |
12%|█▏ | 151/1250 [03:57<34:21, 1.88s/it]
|
650 |
12%|█▏ | 152/1250 [03:59<33:23, 1.82s/it]
|
651 |
12%|█▏ | 153/1250 [04:00<31:32, 1.72s/it]
|
652 |
12%|█▏ | 154/1250 [04:02<29:24, 1.61s/it]
|
653 |
12%|█▏ | 155/1250 [04:03<27:13, 1.49s/it]
|
654 |
12%|█▏ | 156/1250 [04:04<24:24, 1.34s/it]
|
655 |
13%|█▎ | 157/1250 [04:06<30:38, 1.68s/it]
|
656 |
13%|█▎ | 158/1250 [04:08<30:45, 1.69s/it]
|
657 |
13%|█▎ | 159/1250 [04:10<30:02, 1.65s/it]
|
658 |
13%|█▎ | 160/1250 [04:11<28:40, 1.58s/it]
|
659 |
13%|█▎ | 161/1250 [04:12<26:29, 1.46s/it]
|
660 |
13%|█▎ | 162/1250 [04:13<23:57, 1.32s/it]
|
661 |
13%|█▎ | 163/1250 [04:16<29:54, 1.65s/it]
|
662 |
13%|█▎ | 164/1250 [04:17<30:57, 1.71s/it]
|
663 |
13%|█▎ | 165/1250 [04:19<29:58, 1.66s/it]
|
664 |
13%|█▎ | 166/1250 [04:20<28:18, 1.57s/it]
|
665 |
13%|█▎ | 167/1250 [04:22<26:21, 1.46s/it]
|
666 |
13%|█▎ | 168/1250 [04:23<23:44, 1.32s/it]
|
667 |
14%|█▎ | 169/1250 [04:25<29:27, 1.63s/it]
|
668 |
14%|█▎ | 170/1250 [04:27<30:05, 1.67s/it]
|
669 |
14%|█▎ | 171/1250 [04:28<29:08, 1.62s/it]
|
670 |
14%|█▍ | 172/1250 [04:30<27:20, 1.52s/it]
|
671 |
14%|█▍ | 173/1250 [04:31<25:27, 1.42s/it]
|
672 |
14%|█▍ | 174/1250 [04:32<22:57, 1.28s/it]
|
673 |
14%|█▍ | 175/1250 [04:33<25:14, 1.41s/it]
|
674 |
14%|█▍ | 176/1250 [04:36<32:49, 1.83s/it]
|
675 |
14%|█▍ | 177/1250 [04:38<32:19, 1.81s/it]
|
676 |
14%|█▍ | 178/1250 [04:39<30:54, 1.73s/it]
|
677 |
14%|█▍ | 179/1250 [04:41<29:09, 1.63s/it]
|
678 |
14%|█▍ | 180/1250 [04:42<26:40, 1.50s/it]
|
679 |
14%|█▍ | 181/1250 [04:43<23:54, 1.34s/it]
|
680 |
15%|█▍ | 182/1250 [04:45<28:58, 1.63s/it]
|
681 |
15%|█▍ | 183/1250 [04:47<29:22, 1.65s/it]
|
682 |
15%|█▍ | 184/1250 [04:49<28:39, 1.61s/it]
|
683 |
15%|█▍ | 185/1250 [04:50<27:09, 1.53s/it]
|
684 |
15%|█▍ | 186/1250 [04:51<25:10, 1.42s/it]
|
685 |
15%|█▍ | 187/1250 [04:52<22:49, 1.29s/it]
|
686 |
15%|█▌ | 188/1250 [04:55<29:02, 1.64s/it]
|
687 |
15%|█▌ | 189/1250 [04:56<29:43, 1.68s/it]
|
688 |
15%|█▌ | 190/1250 [04:58<28:55, 1.64s/it]
|
689 |
15%|█▌ | 191/1250 [04:59<27:14, 1.54s/it]
|
690 |
15%|█▌ | 192/1250 [05:00<25:07, 1.43s/it]
|
691 |
15%|█▌ | 193/1250 [05:01<22:42, 1.29s/it]
|
692 |
16%|█▌ | 194/1250 [05:04<27:52, 1.58s/it]
|
693 |
16%|█▌ | 195/1250 [05:05<28:41, 1.63s/it]
|
694 |
16%|█▌ | 196/1250 [05:07<28:06, 1.60s/it]
|
695 |
16%|█▌ | 197/1250 [05:08<27:08, 1.55s/it]
|
696 |
16%|█▌ | 198/1250 [05:09<25:40, 1.46s/it]
|
697 |
16%|█▌ | 199/1250 [05:11<23:23, 1.34s/it]
|
698 |
16%|█▌ | 200/1250 [05:12<26:23, 1.51s/it]
|
699 |
|
700 |
16%|█▌ | 200/1250 [05:12<26:23, 1.51s/it]
|
701 |
16%|█▌ | 201/1250 [05:15<33:33, 1.92s/it]
|
702 |
16%|█▌ | 202/1250 [05:17<32:28, 1.86s/it]
|
703 |
16%|█▌ | 203/1250 [05:19<30:40, 1.76s/it]
|
704 |
16%|█▋ | 204/1250 [05:20<28:51, 1.66s/it]
|
705 |
16%|█▋ | 205/1250 [05:21<26:31, 1.52s/it]
|
706 |
16%|█▋ | 206/1250 [05:22<23:42, 1.36s/it]
|
707 |
17%|█▋ | 207/1250 [05:25<29:02, 1.67s/it]
|
708 |
17%|█▋ | 208/1250 [05:26<29:31, 1.70s/it]
|
709 |
17%|█▋ | 209/1250 [05:28<28:26, 1.64s/it]
|
710 |
17%|█▋ | 210/1250 [05:29<26:54, 1.55s/it]
|
711 |
17%|█▋ | 211/1250 [05:30<24:56, 1.44s/it]
|
712 |
17%|█▋ | 212/1250 [05:31<22:33, 1.30s/it]
|
713 |
17%|█▋ | 213/1250 [05:34<28:02, 1.62s/it]
|
714 |
17%|█▋ | 214/1250 [05:35<28:39, 1.66s/it]
|
715 |
17%|█▋ | 215/1250 [05:37<27:54, 1.62s/it]
|
716 |
17%|█▋ | 216/1250 [05:38<26:40, 1.55s/it]
|
717 |
17%|█▋ | 217/1250 [05:40<24:52, 1.44s/it]
|
718 |
17%|█▋ | 218/1250 [05:41<22:36, 1.31s/it]
|
719 |
18%|█▊ | 219/1250 [05:43<27:51, 1.62s/it]
|
720 |
18%|█▊ | 220/1250 [05:45<28:23, 1.65s/it]
|
721 |
18%|█▊ | 221/1250 [05:46<27:36, 1.61s/it]
|
722 |
18%|█▊ | 222/1250 [05:47<26:09, 1.53s/it]
|
723 |
18%|█▊ | 223/1250 [05:49<24:20, 1.42s/it]
|
724 |
18%|█▊ | 224/1250 [05:50<22:20, 1.31s/it]
|
725 |
18%|█▊ | 225/1250 [05:52<25:04, 1.47s/it]
|
726 |
18%|█▊ | 226/1250 [05:54<32:16, 1.89s/it]
|
727 |
18%|█▊ | 227/1250 [05:56<31:41, 1.86s/it]
|
728 |
18%|█▊ | 228/1250 [05:58<30:00, 1.76s/it]
|
729 |
18%|█▊ | 229/1250 [05:59<27:50, 1.64s/it]
|
730 |
18%|█▊ | 230/1250 [06:00<25:26, 1.50s/it]
|
731 |
18%|█▊ | 231/1250 [06:01<22:49, 1.34s/it]
|
732 |
19%|█▊ | 232/1250 [06:04<27:42, 1.63s/it]
|
733 |
19%|█▊ | 233/1250 [06:05<28:19, 1.67s/it]
|
734 |
19%|█▊ | 234/1250 [06:07<27:47, 1.64s/it]
|
735 |
19%|█▉ | 235/1250 [06:08<26:41, 1.58s/it]
|
736 |
19%|█▉ | 236/1250 [06:10<25:01, 1.48s/it]
|
737 |
19%|█▉ | 237/1250 [06:11<22:57, 1.36s/it]
|
738 |
19%|█▉ | 238/1250 [06:13<28:17, 1.68s/it]
|
739 |
19%|█▉ | 239/1250 [06:15<28:30, 1.69s/it]
|
740 |
19%|█▉ | 240/1250 [06:16<27:31, 1.64s/it]
|
741 |
19%|█▉ | 241/1250 [06:18<25:47, 1.53s/it]
|
742 |
19%|█▉ | 242/1250 [06:19<23:55, 1.42s/it]
|
743 |
19%|█▉ | 243/1250 [06:20<21:42, 1.29s/it]
|
744 |
20%|█▉ | 244/1250 [06:22<27:29, 1.64s/it]
|
745 |
20%|█▉ | 245/1250 [06:24<27:55, 1.67s/it]
|
746 |
20%|█▉ | 246/1250 [06:25<27:02, 1.62s/it]
|
747 |
20%|█▉ | 247/1250 [06:27<25:41, 1.54s/it]
|
748 |
20%|█▉ | 248/1250 [06:28<23:48, 1.43s/it]
|
749 |
20%|█▉ | 249/1250 [06:29<21:24, 1.28s/it]
|
750 |
20%|██ | 250/1250 [06:31<23:19, 1.40s/it]
|
751 |
20%|██ | 251/1250 [06:34<31:22, 1.88s/it]
|
752 |
20%|██ | 252/1250 [06:35<30:47, 1.85s/it]
|
753 |
20%|██ | 253/1250 [06:37<28:53, 1.74s/it]
|
754 |
20%|██ | 254/1250 [06:38<26:57, 1.62s/it]
|
755 |
20%|██ | 255/1250 [06:39<24:37, 1.48s/it]
|
756 |
20%|██ | 256/1250 [06:40<22:05, 1.33s/it]
|
757 |
21%|██ | 257/1250 [06:43<27:33, 1.66s/it]
|
758 |
21%|██ | 258/1250 [06:45<28:01, 1.69s/it]
|
759 |
21%|██ | 259/1250 [06:46<27:31, 1.67s/it]
|
760 |
21%|██ | 260/1250 [06:48<26:14, 1.59s/it]
|
761 |
21%|██ | 261/1250 [06:49<24:25, 1.48s/it]
|
762 |
21%|██ | 262/1250 [06:50<21:49, 1.33s/it]
|
763 |
21%|██ | 263/1250 [06:52<26:46, 1.63s/it]
|
764 |
21%|██ | 264/1250 [06:54<27:14, 1.66s/it]
|
765 |
21%|██ | 265/1250 [06:55<26:29, 1.61s/it]
|
766 |
21%|██▏ | 266/1250 [06:57<25:03, 1.53s/it]
|
767 |
21%|██▏ | 267/1250 [06:58<23:19, 1.42s/it]
|
768 |
21%|██▏ | 268/1250 [06:59<21:12, 1.30s/it]
|
769 |
22%|██▏ | 269/1250 [07:01<25:45, 1.58s/it]
|
770 |
22%|██▏ | 270/1250 [07:03<26:41, 1.63s/it]
|
771 |
22%|██▏ | 271/1250 [07:04<26:09, 1.60s/it]
|
772 |
22%|██▏ | 272/1250 [07:06<24:53, 1.53s/it]
|
773 |
22%|██▏ | 273/1250 [07:07<23:15, 1.43s/it]
|
774 |
22%|██▏ | 274/1250 [07:08<21:06, 1.30s/it]
|
775 |
22%|██▏ | 275/1250 [07:10<22:48, 1.40s/it]
|
776 |
22%|██▏ | 276/1250 [07:12<29:24, 1.81s/it]
|
777 |
22%|██▏ | 277/1250 [07:14<29:19, 1.81s/it]
|
778 |
22%|██▏ | 278/1250 [07:16<27:58, 1.73s/it]
|
779 |
22%|██▏ | 279/1250 [07:17<26:26, 1.63s/it]
|
780 |
22%|██▏ | 280/1250 [07:18<24:16, 1.50s/it]
|
781 |
22%|██▏ | 281/1250 [07:19<21:57, 1.36s/it]
|
782 |
23%|██▎ | 282/1250 [07:22<26:51, 1.66s/it]
|
783 |
23%|██▎ | 283/1250 [07:23<27:18, 1.69s/it]
|
784 |
23%|██▎ | 284/1250 [07:25<26:33, 1.65s/it]
|
785 |
23%|██▎ | 285/1250 [07:26<25:13, 1.57s/it]
|
786 |
23%|██▎ | 286/1250 [07:28<23:27, 1.46s/it]
|
787 |
23%|██▎ | 287/1250 [07:29<21:21, 1.33s/it]
|
788 |
23%|██▎ | 288/1250 [07:31<26:40, 1.66s/it]
|
789 |
23%|██▎ | 289/1250 [07:33<26:49, 1.68s/it]
|
790 |
23%|██▎ | 290/1250 [07:34<26:15, 1.64s/it]
|
791 |
23%|██▎ | 291/1250 [07:36<24:52, 1.56s/it]
|
792 |
23%|██▎ | 292/1250 [07:37<22:56, 1.44s/it]
|
793 |
23%|██▎ | 293/1250 [07:38<20:36, 1.29s/it]
|
794 |
24%|██▎ | 294/1250 [07:40<25:20, 1.59s/it]
|
795 |
24%|██▎ | 295/1250 [07:42<25:45, 1.62s/it]
|
796 |
24%|██▎ | 296/1250 [07:43<24:59, 1.57s/it]
|
797 |
24%|██▍ | 297/1250 [07:44<23:42, 1.49s/it]
|
798 |
24%|██▍ | 298/1250 [07:46<22:08, 1.40s/it]
|
799 |
24%|██▍ | 299/1250 [07:47<20:04, 1.27s/it]
|
800 |
24%|██▍ | 300/1250 [07:48<22:58, 1.45s/it]
|
801 |
|
802 |
24%|██▍ | 300/1250 [07:48<22:58, 1.45s/it]
|
803 |
24%|██▍ | 301/1250 [07:51<29:17, 1.85s/it]
|
804 |
24%|██▍ | 302/1250 [07:53<28:36, 1.81s/it]
|
805 |
24%|██▍ | 303/1250 [07:55<27:16, 1.73s/it]
|
806 |
24%|██▍ | 304/1250 [07:56<25:46, 1.63s/it]
|
807 |
24%|██▍ | 305/1250 [07:57<23:38, 1.50s/it]
|
808 |
24%|██▍ | 306/1250 [07:58<21:16, 1.35s/it]
|
809 |
25%|██▍ | 307/1250 [08:00<25:45, 1.64s/it]
|
810 |
25%|██▍ | 308/1250 [08:02<26:24, 1.68s/it]
|
811 |
25%|██▍ | 309/1250 [08:04<25:52, 1.65s/it]
|
812 |
25%|██▍ | 310/1250 [08:05<24:30, 1.56s/it]
|
813 |
25%|██▍ | 311/1250 [08:06<22:52, 1.46s/it]
|
814 |
25%|██▍ | 312/1250 [08:07<20:47, 1.33s/it]
|
815 |
25%|██▌ | 313/1250 [08:10<26:16, 1.68s/it]
|
816 |
25%|██▌ | 314/1250 [08:12<26:45, 1.72s/it]
|
817 |
25%|██▌ | 315/1250 [08:13<25:53, 1.66s/it]
|
818 |
25%|██▌ | 316/1250 [08:15<24:24, 1.57s/it]
|
819 |
25%|██▌ | 317/1250 [08:16<22:36, 1.45s/it]
|
820 |
25%|█��▌ | 318/1250 [08:17<20:24, 1.31s/it]
|
821 |
26%|██▌ | 319/1250 [08:19<25:10, 1.62s/it]
|
822 |
26%|██▌ | 320/1250 [08:21<25:30, 1.65s/it]
|
823 |
26%|██▌ | 321/1250 [08:22<24:42, 1.60s/it]
|
824 |
26%|██▌ | 322/1250 [08:24<23:36, 1.53s/it]
|
825 |
26%|██▌ | 323/1250 [08:25<21:59, 1.42s/it]
|
826 |
26%|██▌ | 324/1250 [08:26<19:52, 1.29s/it]
|
827 |
26%|██▌ | 325/1250 [08:28<22:51, 1.48s/it]
|
828 |
26%|██▌ | 326/1250 [08:31<28:59, 1.88s/it]
|
829 |
26%|██▌ | 327/1250 [08:32<28:15, 1.84s/it]
|
830 |
26%|██▌ | 328/1250 [08:34<26:38, 1.73s/it]
|
831 |
26%|██▋ | 329/1250 [08:35<24:51, 1.62s/it]
|
832 |
26%|██▋ | 330/1250 [08:36<22:40, 1.48s/it]
|
833 |
26%|██▋ | 331/1250 [08:37<20:21, 1.33s/it]
|
834 |
27%|██▋ | 332/1250 [08:40<24:40, 1.61s/it]
|
835 |
27%|██▋ | 333/1250 [08:41<25:06, 1.64s/it]
|
836 |
27%|██▋ | 334/1250 [08:43<24:38, 1.61s/it]
|
837 |
27%|██▋ | 335/1250 [08:44<23:33, 1.54s/it]
|
838 |
27%|██▋ | 336/1250 [08:45<21:48, 1.43s/it]
|
839 |
27%|██▋ | 337/1250 [08:46<19:37, 1.29s/it]
|
840 |
27%|██▋ | 338/1250 [08:49<24:31, 1.61s/it]
|
841 |
27%|██▋ | 339/1250 [08:50<25:13, 1.66s/it]
|
842 |
27%|██▋ | 340/1250 [08:52<24:29, 1.61s/it]
|
843 |
27%|██▋ | 341/1250 [08:53<23:28, 1.55s/it]
|
844 |
27%|██▋ | 342/1250 [08:55<21:50, 1.44s/it]
|
845 |
27%|██▋ | 343/1250 [08:56<20:01, 1.32s/it]
|
846 |
28%|██▊ | 344/1250 [08:58<24:53, 1.65s/it]
|
847 |
28%|██▊ | 345/1250 [09:00<25:11, 1.67s/it]
|
848 |
28%|██▊ | 346/1250 [09:01<24:32, 1.63s/it]
|
849 |
28%|██▊ | 347/1250 [09:03<23:18, 1.55s/it]
|
850 |
28%|██▊ | 348/1250 [09:04<21:27, 1.43s/it]
|
851 |
28%|██▊ | 349/1250 [09:05<19:20, 1.29s/it]
|
852 |
28%|██▊ | 350/1250 [09:07<22:39, 1.51s/it]
|
853 |
28%|██▊ | 351/1250 [09:10<29:06, 1.94s/it]
|
854 |
28%|██▊ | 352/1250 [09:12<28:24, 1.90s/it]
|
855 |
28%|██▊ | 353/1250 [09:13<26:48, 1.79s/it]
|
856 |
28%|██▊ | 354/1250 [09:14<24:54, 1.67s/it]
|
857 |
28%|██▊ | 355/1250 [09:16<22:40, 1.52s/it]
|
858 |
28%|██▊ | 356/1250 [09:17<20:29, 1.38s/it]
|
859 |
29%|██▊ | 357/1250 [09:19<24:22, 1.64s/it]
|
860 |
29%|██▊ | 358/1250 [09:21<24:35, 1.65s/it]
|
861 |
29%|██▊ | 359/1250 [09:22<23:54, 1.61s/it]
|
862 |
29%|██▉ | 360/1250 [09:23<22:44, 1.53s/it]
|
863 |
29%|██▉ | 361/1250 [09:25<21:14, 1.43s/it]
|
864 |
29%|██▉ | 362/1250 [09:26<19:13, 1.30s/it]
|
865 |
29%|██▉ | 363/1250 [09:28<23:56, 1.62s/it]
|
866 |
29%|██▉ | 364/1250 [09:30<24:15, 1.64s/it]
|
867 |
29%|██▉ | 365/1250 [09:31<23:39, 1.60s/it]
|
868 |
29%|██▉ | 366/1250 [09:33<22:30, 1.53s/it]
|
869 |
29%|██▉ | 367/1250 [09:34<21:11, 1.44s/it]
|
870 |
29%|██▉ | 368/1250 [09:35<19:05, 1.30s/it]
|
871 |
30%|██▉ | 369/1250 [09:37<24:00, 1.63s/it]
|
872 |
30%|██▉ | 370/1250 [09:39<24:30, 1.67s/it]
|
873 |
30%|██▉ | 371/1250 [09:40<23:53, 1.63s/it]
|
874 |
30%|██▉ | 372/1250 [09:42<22:41, 1.55s/it]
|
875 |
30%|██▉ | 373/1250 [09:43<20:58, 1.44s/it]
|
876 |
30%|██▉ | 374/1250 [09:44<18:54, 1.30s/it]
|
877 |
30%|███ | 375/1250 [09:46<20:17, 1.39s/it]
|
878 |
30%|███ | 376/1250 [09:48<26:28, 1.82s/it]
|
879 |
30%|███ | 377/1250 [09:50<25:49, 1.78s/it]
|
880 |
30%|███ | 378/1250 [09:52<24:25, 1.68s/it]
|
881 |
30%|███ | 379/1250 [09:53<22:51, 1.57s/it]
|
882 |
30%|███ | 380/1250 [09:54<21:04, 1.45s/it]
|
883 |
30%|███ | 381/1250 [09:55<18:55, 1.31s/it]
|
884 |
31%|███ | 382/1250 [09:57<23:55, 1.65s/it]
|
885 |
31%|███ | 383/1250 [09:59<24:26, 1.69s/it]
|
886 |
31%|███ | 384/1250 [10:01<23:44, 1.64s/it]
|
887 |
31%|███ | 385/1250 [10:02<22:36, 1.57s/it]
|
888 |
31%|███ | 386/1250 [10:03<21:00, 1.46s/it]
|
889 |
31%|███ | 387/1250 [10:04<19:05, 1.33s/it]
|
890 |
31%|███ | 388/1250 [10:07<22:40, 1.58s/it]
|
891 |
31%|███ | 389/1250 [10:08<23:05, 1.61s/it]
|
892 |
31%|███ | 390/1250 [10:10<22:56, 1.60s/it]
|
893 |
31%|███▏ | 391/1250 [10:11<22:10, 1.55s/it]
|
894 |
31%|███▏ | 392/1250 [10:12<20:33, 1.44s/it]
|
895 |
31%|███▏ | 393/1250 [10:13<18:37, 1.30s/it]
|
896 |
32%|███▏ | 394/1250 [10:16<23:25, 1.64s/it]
|
897 |
32%|███▏ | 395/1250 [10:18<23:45, 1.67s/it]
|
898 |
32%|███▏ | 396/1250 [10:19<23:08, 1.63s/it]
|
899 |
32%|███▏ | 397/1250 [10:20<21:55, 1.54s/it]
|
900 |
32%|███▏ | 398/1250 [10:22<20:16, 1.43s/it]
|
901 |
32%|███▏ | 399/1250 [10:23<18:21, 1.29s/it]
|
902 |
32%|███▏ | 400/1250 [10:24<20:34, 1.45s/it]
|
903 |
|
904 |
32%|███▏ | 400/1250 [10:24<20:34, 1.45s/it]
|
905 |
32%|███▏ | 401/1250 [10:27<26:02, 1.84s/it]
|
906 |
32%|███▏ | 402/1250 [10:29<25:43, 1.82s/it]
|
907 |
32%|███▏ | 403/1250 [10:31<24:36, 1.74s/it]
|
908 |
32%|███▏ | 404/1250 [10:32<22:58, 1.63s/it]
|
909 |
32%|███▏ | 405/1250 [10:33<21:12, 1.51s/it]
|
910 |
32%|███▏ | 406/1250 [10:34<19:08, 1.36s/it]
|
911 |
33%|███▎ | 407/1250 [10:37<23:55, 1.70s/it]
|
912 |
33%|███▎ | 408/1250 [10:38<24:11, 1.72s/it]
|
913 |
33%|███▎ | 409/1250 [10:40<23:27, 1.67s/it]
|
914 |
33%|███▎ | 410/1250 [10:41<22:04, 1.58s/it]
|
915 |
33%|███▎ | 411/1250 [10:42<20:25, 1.46s/it]
|
916 |
33%|███▎ | 412/1250 [10:43<18:26, 1.32s/it]
|
917 |
33%|███▎ | 413/1250 [10:46<22:59, 1.65s/it]
|
918 |
33%|███▎ | 414/1250 [10:48<23:20, 1.68s/it]
|
919 |
33%|███▎ | 415/1250 [10:49<22:33, 1.62s/it]
|
920 |
33%|███▎ | 416/1250 [10:50<21:15, 1.53s/it]
|
921 |
33%|███▎ | 417/1250 [10:52<19:25, 1.40s/it]
|
922 |
33%|███▎ | 418/1250 [10:52<17:26, 1.26s/it]
|
923 |
34%|███▎ | 419/1250 [10:55<21:48, 1.57s/it]
|
924 |
34%|███▎ | 420/1250 [10:56<22:18, 1.61s/it]
|
925 |
34%|███▎ | 421/1250 [10:58<21:51, 1.58s/it]
|
926 |
34%|███▍ | 422/1250 [10:59<21:12, 1.54s/it]
|
927 |
34%|███▍ | 423/1250 [11:01<19:59, 1.45s/it]
|
928 |
34%|███▍ | 424/1250 [11:02<18:08, 1.32s/it]
|
929 |
34%|███▍ | 425/1250 [11:03<19:17, 1.40s/it]
|
930 |
34%|███▍ | 426/1250 [11:06<25:20, 1.85s/it]
|
931 |
34%|███▍ | 427/1250 [11:08<24:54, 1.82s/it]
|
932 |
34%|███▍ | 428/1250 [11:09<23:45, 1.73s/it]
|
933 |
34%|███▍ | 429/1250 [11:11<22:22, 1.64s/it]
|
934 |
34%|███▍ | 430/1250 [11:12<20:29, 1.50s/it]
|
935 |
34%|███▍ | 431/1250 [11:13<18:27, 1.35s/it]
|
936 |
35%|███▍ | 432/1250 [11:15<21:54, 1.61s/it]
|
937 |
35%|███▍ | 433/1250 [11:17<22:24, 1.65s/it]
|
938 |
35%|███▍ | 434/1250 [11:18<21:43, 1.60s/it]
|
939 |
35%|███▍ | 435/1250 [11:20<20:37, 1.52s/it]
|
940 |
35%|███▍ | 436/1250 [11:21<19:27, 1.43s/it]
|
941 |
35%|███▍ | 437/1250 [11:22<17:33, 1.30s/it]
|
942 |
35%|███▌ | 438/1250 [11:24<21:45, 1.61s/it]
|
943 |
35%|███▌ | 439/1250 [11:26<22:22, 1.65s/it]
|
944 |
35%|███▌ | 440/1250 [11:28<21:56, 1.62s/it]
|
945 |
35%|███▌ | 441/1250 [11:29<21:01, 1.56s/it]
|
946 |
35%|███▌ | 442/1250 [11:30<19:33, 1.45s/it]
|
947 |
35%|███▌ | 443/1250 [11:31<17:42, 1.32s/it]
|
948 |
36%|███▌ | 444/1250 [11:34<22:11, 1.65s/it]
|
949 |
36%|███▌ | 445/1250 [11:35<22:31, 1.68s/it]
|
950 |
36%|███▌ | 446/1250 [11:37<22:06, 1.65s/it]
|
951 |
36%|███▌ | 447/1250 [11:38<20:52, 1.56s/it]
|
952 |
36%|███▌ | 448/1250 [11:40<19:07, 1.43s/it]
|
953 |
36%|███▌ | 449/1250 [11:40<17:11, 1.29s/it]
|
954 |
36%|███▌ | 450/1250 [11:42<18:49, 1.41s/it]
|
955 |
36%|███▌ | 451/1250 [11:45<24:40, 1.85s/it]
|
956 |
36%|███▌ | 452/1250 [11:47<24:24, 1.84s/it]
|
957 |
36%|███▌ | 453/1250 [11:48<23:15, 1.75s/it]
|
958 |
36%|███▋ | 454/1250 [11:50<21:50, 1.65s/it]
|
959 |
36%|███▋ | 455/1250 [11:51<20:05, 1.52s/it]
|
960 |
36%|███▋ | 456/1250 [11:52<17:55, 1.35s/it]
|
961 |
37%|███▋ | 457/1250 [11:54<22:22, 1.69s/it]
|
962 |
37%|███▋ | 458/1250 [11:56<22:42, 1.72s/it]
|
963 |
37%|███▋ | 459/1250 [11:58<21:46, 1.65s/it]
|
964 |
37%|███▋ | 460/1250 [11:59<20:25, 1.55s/it]
|
965 |
37%|███▋ | 461/1250 [12:00<18:57, 1.44s/it]
|
966 |
37%|███▋ | 462/1250 [12:01<17:05, 1.30s/it]
|
967 |
37%|███▋ | 463/1250 [12:03<20:37, 1.57s/it]
|
968 |
37%|███▋ | 464/1250 [12:05<21:05, 1.61s/it]
|
969 |
37%|███▋ | 465/1250 [12:07<20:35, 1.57s/it]
|
970 |
37%|███▋ | 466/1250 [12:08<19:39, 1.50s/it]
|
971 |
37%|███▋ | 467/1250 [12:09<18:22, 1.41s/it]
|
972 |
37%|███▋ | 468/1250 [12:10<16:57, 1.30s/it]
|
973 |
38%|███▊ | 469/1250 [12:12<20:46, 1.60s/it]
|
974 |
38%|███▊ | 470/1250 [12:14<21:07, 1.62s/it]
|
975 |
38%|███▊ | 471/1250 [12:16<20:47, 1.60s/it]
|
976 |
38%|███▊ | 472/1250 [12:17<19:43, 1.52s/it]
|
977 |
38%|███▊ | 473/1250 [12:18<18:18, 1.41s/it]
|
978 |
38%|███▊ | 474/1250 [12:19<16:37, 1.29s/it]
|
979 |
38%|███▊ | 475/1250 [12:21<18:49, 1.46s/it]
|
980 |
38%|███▊ | 476/1250 [12:24<24:27, 1.90s/it]
|
981 |
38%|███▊ | 477/1250 [12:26<24:00, 1.86s/it]
|
982 |
38%|███▊ | 478/1250 [12:27<22:39, 1.76s/it]
|
983 |
38%|███▊ | 479/1250 [12:29<21:01, 1.64s/it]
|
984 |
38%|███▊ | 480/1250 [12:30<18:58, 1.48s/it]
|
985 |
38%|███▊ | 481/1250 [12:31<16:44, 1.31s/it]
|
986 |
39%|███▊ | 482/1250 [12:33<20:30, 1.60s/it]
|
987 |
39%|███▊ | 483/1250 [12:35<20:39, 1.62s/it]
|
988 |
39%|███▊ | 484/1250 [12:36<20:30, 1.61s/it]
|
989 |
39%|███▉ | 485/1250 [12:38<19:36, 1.54s/it]
|
990 |
39%|███▉ | 486/1250 [12:39<18:15, 1.43s/it]
|
991 |
39%|███▉ | 487/1250 [12:40<16:37, 1.31s/it]
|
992 |
39%|███▉ | 488/1250 [12:42<20:55, 1.65s/it]
|
993 |
39%|███▉ | 489/1250 [12:44<21:17, 1.68s/it]
|
994 |
39%|███▉ | 490/1250 [12:45<20:34, 1.62s/it]
|
995 |
39%|███▉ | 491/1250 [12:47<19:28, 1.54s/it]
|
996 |
39%|███▉ | 492/1250 [12:48<18:28, 1.46s/it]
|
997 |
39%|███▉ | 493/1250 [12:49<16:39, 1.32s/it]
|
998 |
40%|███▉ | 494/1250 [12:51<20:23, 1.62s/it]
|
999 |
40%|███▉ | 495/1250 [12:53<20:39, 1.64s/it]
|
1000 |
40%|███▉ | 496/1250 [12:55<20:11, 1.61s/it]
|
1001 |
40%|███▉ | 497/1250 [12:56<19:09, 1.53s/it]
|
1002 |
40%|███▉ | 498/1250 [12:57<17:44, 1.42s/it]
|
1003 |
40%|███▉ | 499/1250 [12:58<15:57, 1.28s/it]
|
1004 |
40%|████ | 500/1250 [13:00<17:17, 1.38s/it]
|
1005 |
|
1006 |
40%|████ | 500/1250 [13:00<17:17, 1.38s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
|
1007 |
+
***** Running Evaluation *****
|
1008 |
+
Num examples = 341
|
1009 |
+
Batch size = 8
|
1010 |
+
{'loss': 20.0794, 'learning_rate': 3.675e-06, 'epoch': 3.98}
|
1011 |
+
{'loss': 10.5776, 'learning_rate': 7.425e-06, 'epoch': 7.98}
|
1012 |
+
{'loss': 6.6033, 'learning_rate': 1.1174999999999999e-05, 'epoch': 11.98}
|
1013 |
+
{'loss': 5.3857, 'learning_rate': 1.4925e-05, 'epoch': 15.98}
|
1014 |
+
{'loss': 4.4431, 'learning_rate': 1.8675e-05, 'epoch': 19.98}
|
1015 |
+
|
1016 |
+
|
1017 |
0%| | 0/43 [00:00<?, ?it/s][A
|
1018 |
+
|
1019 |
5%|▍ | 2/43 [00:00<00:04, 9.99it/s][A
|
1020 |
+
|
1021 |
7%|▋ | 3/43 [00:00<00:07, 5.48it/s][A
|
1022 |
+
|
1023 |
9%|▉ | 4/43 [00:00<00:09, 4.26it/s][A
|
1024 |
+
|
1025 |
12%|█▏ | 5/43 [00:01<00:09, 4.09it/s][A
|
1026 |
+
|
1027 |
14%|█▍ | 6/43 [00:01<00:09, 3.90it/s][A
|
1028 |
+
|
1029 |
16%|█▋ | 7/43 [00:01<00:09, 3.85it/s][A
|
1030 |
+
|
1031 |
19%|█▊ | 8/43 [00:01<00:09, 3.77it/s][A
|
1032 |
+
|
1033 |
21%|██ | 9/43 [00:02<00:09, 3.47it/s][A
|
1034 |
+
|
1035 |
23%|██▎ | 10/43 [00:02<00:08, 3.74it/s][A
|
1036 |
+
|
1037 |
26%|██▌ | 11/43 [00:02<00:09, 3.54it/s][A
|
1038 |
+
|
1039 |
28%|██▊ | 12/43 [00:03<00:08, 3.77it/s][A
|
1040 |
+
|
1041 |
30%|███ | 13/43 [00:03<00:07, 3.86it/s][A
|
1042 |
+
|
1043 |
33%|███▎ | 14/43 [00:03<00:08, 3.48it/s][A
|
1044 |
+
|
1045 |
35%|███▍ | 15/43 [00:04<00:09, 2.99it/s][A
|
1046 |
+
|
1047 |
37%|███▋ | 16/43 [00:04<00:08, 3.05it/s][A
|
1048 |
+
|
1049 |
40%|███▉ | 17/43 [00:04<00:08, 3.14it/s][A
|
1050 |
+
|
1051 |
42%|████▏ | 18/43 [00:05<00:08, 3.05it/s][A
|
1052 |
+
|
1053 |
44%|████▍ | 19/43 [00:05<00:08, 2.85it/s][A
|
1054 |
+
|
1055 |
47%|████▋ | 20/43 [00:05<00:09, 2.54it/s][A
|
1056 |
+
|
1057 |
49%|████▉ | 21/43 [00:06<00:08, 2.66it/s][A
|
1058 |
+
|
1059 |
51%|█████ | 22/43 [00:06<00:07, 2.70it/s][A
|
1060 |
+
|
1061 |
53%|█████▎ | 23/43 [00:06<00:07, 2.82it/s][A
|
1062 |
+
|
1063 |
56%|█████▌ | 24/43 [00:07<00:06, 3.09it/s][A
|
1064 |
+
|
1065 |
58%|█████▊ | 25/43 [00:07<00:05, 3.22it/s][A
|
1066 |
+
|
1067 |
60%|██████ | 26/43 [00:07<00:05, 3.21it/s][A
|
1068 |
+
|
1069 |
63%|██████▎ | 27/43 [00:07<00:04, 3.59it/s][A
|
1070 |
+
|
1071 |
65%|██████▌ | 28/43 [00:08<00:04, 3.65it/s][A
|
1072 |
+
|
1073 |
67%|██████▋ | 29/43 [00:08<00:03, 3.76it/s][A
|
1074 |
+
|
1075 |
70%|██████▉ | 30/43 [00:08<00:03, 3.83it/s][A
|
1076 |
+
|
1077 |
72%|███████▏ | 31/43 [00:08<00:03, 3.79it/s][A
|
1078 |
+
|
1079 |
74%|███████▍ | 32/43 [00:09<00:02, 3.85it/s][A
|
1080 |
+
|
1081 |
77%|███████▋ | 33/43 [00:09<00:02, 3.54it/s][A
|
1082 |
+
|
1083 |
79%|███████▉ | 34/43 [00:09<00:02, 3.51it/s][A
|
1084 |
+
|
1085 |
81%|████████▏ | 35/43 [00:10<00:02, 3.51it/s][A
|
1086 |
+
|
1087 |
84%|████████▎ | 36/43 [00:10<00:02, 3.42it/s][A
|
1088 |
+
|
1089 |
86%|████████▌ | 37/43 [00:10<00:01, 3.56it/s][A
|
1090 |
+
|
1091 |
88%|████████▊ | 38/43 [00:11<00:01, 3.32it/s][A
|
1092 |
+
|
1093 |
91%|█████████ | 39/43 [00:11<00:01, 3.38it/s][A
|
1094 |
+
|
1095 |
93%|█████████▎| 40/43 [00:11<00:00, 3.27it/s][A
|
1096 |
+
|
1097 |
95%|█████████▌| 41/43 [00:11<00:00, 3.37it/s][A
|
1098 |
+
|
1099 |
98%|█████████▊| 42/43 [00:12<00:00, 3.19it/s][A
|
1100 |
+
|
1101 |
|
1102 |
+
|
1103 |
|
1104 |
40%|████ | 500/1250 [13:13<17:17, 1.38s/it]
|
1105 |
+
|
1106 |
+
|
1107 |
[ASaving model checkpoint to ./checkpoint-500
|
1108 |
+
Configuration saved in ./checkpoint-500/config.json
|
1109 |
+
Model weights saved in ./checkpoint-500/pytorch_model.bin
|
1110 |
+
Configuration saved in ./checkpoint-500/preprocessor_config.json
|
1111 |
+
Configuration saved in ./preprocessor_config.json
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b3c7996c48bbce91a11a7b8efbb9dbd48a52cc46b992569ecdef9e54e1180da
|
3 |
+
size 1262173745
|
run.sh
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="mozilla-foundation/common_voice_8_0" \
|
3 |
+
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
4 |
+
--dataset_config_name="ur" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--num_train_epochs="50" \
|
8 |
+
--per_device_train_batch_size="8" \
|
9 |
+
--per_device_eval_batch_size="8" \
|
10 |
+
--gradient_accumulation_steps="4" \
|
11 |
+
--learning_rate="7.5e-5" \
|
12 |
+
--warmup_steps="2000" \
|
13 |
+
--length_column_name="input_length" \
|
14 |
+
--evaluation_strategy="steps" \
|
15 |
+
--text_column_name="sentence" \
|
16 |
+
--chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
|
17 |
+
--save_steps="500" \
|
18 |
+
--eval_steps="500" \
|
19 |
+
--logging_steps="100" \
|
20 |
+
--layerdrop="0.0" \
|
21 |
+
--activation_dropout="0.1" \
|
22 |
+
--save_total_limit="3" \
|
23 |
+
--freeze_feature_encoder \
|
24 |
+
--feat_proj_dropout="0.0" \
|
25 |
+
--mask_time_prob="0.75" \
|
26 |
+
--mask_time_length="10" \
|
27 |
+
--mask_feature_prob="0.25" \
|
28 |
+
--mask_feature_length="64" \
|
29 |
+
--gradient_checkpointing \
|
30 |
+
--use_auth_token \
|
31 |
+
--fp16 \
|
32 |
+
--group_by_length \
|
33 |
+
--do_train=1 \
|
34 |
+
--do_eval=1 \
|
35 |
+
--push_to_hub
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.17.0.dev0")
|
53 |
+
|
54 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
def list_field(default=None, metadata=None):
|
61 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class ModelArguments:
|
66 |
+
"""
|
67 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
68 |
+
"""
|
69 |
+
|
70 |
+
model_name_or_path: str = field(
|
71 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
72 |
+
)
|
73 |
+
tokenizer_name_or_path: Optional[str] = field(
|
74 |
+
default=None,
|
75 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
76 |
+
)
|
77 |
+
cache_dir: Optional[str] = field(
|
78 |
+
default=None,
|
79 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
80 |
+
)
|
81 |
+
freeze_feature_encoder: bool = field(
|
82 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
83 |
+
)
|
84 |
+
attention_dropout: float = field(
|
85 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
86 |
+
)
|
87 |
+
activation_dropout: float = field(
|
88 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
89 |
+
)
|
90 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
91 |
+
hidden_dropout: float = field(
|
92 |
+
default=0.0,
|
93 |
+
metadata={
|
94 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
95 |
+
},
|
96 |
+
)
|
97 |
+
final_dropout: float = field(
|
98 |
+
default=0.0,
|
99 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
100 |
+
)
|
101 |
+
mask_time_prob: float = field(
|
102 |
+
default=0.05,
|
103 |
+
metadata={
|
104 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
105 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
106 |
+
"vectors will be masked along the time axis."
|
107 |
+
},
|
108 |
+
)
|
109 |
+
mask_time_length: int = field(
|
110 |
+
default=10,
|
111 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
112 |
+
)
|
113 |
+
mask_feature_prob: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={
|
116 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
117 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
mask_feature_length: int = field(
|
121 |
+
default=10,
|
122 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
123 |
+
)
|
124 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
125 |
+
ctc_loss_reduction: Optional[str] = field(
|
126 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
@dataclass
|
131 |
+
class DataTrainingArguments:
|
132 |
+
"""
|
133 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
134 |
+
|
135 |
+
Using `HfArgumentParser` we can turn this class
|
136 |
+
into argparse arguments to be able to specify them on
|
137 |
+
the command line.
|
138 |
+
"""
|
139 |
+
|
140 |
+
dataset_name: str = field(
|
141 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
142 |
+
)
|
143 |
+
dataset_config_name: str = field(
|
144 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
145 |
+
)
|
146 |
+
train_split_name: str = field(
|
147 |
+
default="train+validation",
|
148 |
+
metadata={
|
149 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train+validation'"
|
150 |
+
},
|
151 |
+
)
|
152 |
+
eval_split_name: str = field(
|
153 |
+
default="test",
|
154 |
+
metadata={
|
155 |
+
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
|
156 |
+
},
|
157 |
+
)
|
158 |
+
audio_column_name: str = field(
|
159 |
+
default="audio",
|
160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
161 |
+
)
|
162 |
+
text_column_name: str = field(
|
163 |
+
default="text",
|
164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
165 |
+
)
|
166 |
+
overwrite_cache: bool = field(
|
167 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
168 |
+
)
|
169 |
+
preprocessing_num_workers: Optional[int] = field(
|
170 |
+
default=None,
|
171 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
172 |
+
)
|
173 |
+
max_train_samples: Optional[int] = field(
|
174 |
+
default=None,
|
175 |
+
metadata={
|
176 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
177 |
+
"value if set."
|
178 |
+
},
|
179 |
+
)
|
180 |
+
max_eval_samples: Optional[int] = field(
|
181 |
+
default=None,
|
182 |
+
metadata={
|
183 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
184 |
+
"value if set."
|
185 |
+
},
|
186 |
+
)
|
187 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
188 |
+
default=None,
|
189 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
190 |
+
)
|
191 |
+
eval_metrics: List[str] = list_field(
|
192 |
+
default=["wer"],
|
193 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
194 |
+
)
|
195 |
+
max_duration_in_seconds: float = field(
|
196 |
+
default=20.0,
|
197 |
+
metadata={
|
198 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
199 |
+
},
|
200 |
+
)
|
201 |
+
min_duration_in_seconds: float = field(
|
202 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
203 |
+
)
|
204 |
+
preprocessing_only: bool = field(
|
205 |
+
default=False,
|
206 |
+
metadata={
|
207 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
208 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
209 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
210 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
211 |
+
},
|
212 |
+
)
|
213 |
+
use_auth_token: bool = field(
|
214 |
+
default=False,
|
215 |
+
metadata={
|
216 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
217 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
218 |
+
},
|
219 |
+
)
|
220 |
+
unk_token: str = field(
|
221 |
+
default="[UNK]",
|
222 |
+
metadata={"help": "The unk token for the tokenizer"},
|
223 |
+
)
|
224 |
+
pad_token: str = field(
|
225 |
+
default="[PAD]",
|
226 |
+
metadata={"help": "The padding token for the tokenizer"},
|
227 |
+
)
|
228 |
+
word_delimiter_token: str = field(
|
229 |
+
default="|",
|
230 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
231 |
+
)
|
232 |
+
phoneme_language: Optional[str] = field(
|
233 |
+
default=None,
|
234 |
+
metadata={
|
235 |
+
"help": "The target language that should be used be"
|
236 |
+
" passed to the tokenizer for tokenization. Note that"
|
237 |
+
" this is only relevant if the model classifies the"
|
238 |
+
" input audio to a sequence of phoneme sequences."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
@dataclass
|
244 |
+
class DataCollatorCTCWithPadding:
|
245 |
+
"""
|
246 |
+
Data collator that will dynamically pad the inputs received.
|
247 |
+
Args:
|
248 |
+
processor (:class:`~transformers.AutoProcessor`)
|
249 |
+
The processor used for proccessing the data.
|
250 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
251 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
252 |
+
among:
|
253 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
254 |
+
sequence if provided).
|
255 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
256 |
+
maximum acceptable input length for the model if that argument is not provided.
|
257 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
258 |
+
different lengths).
|
259 |
+
max_length (:obj:`int`, `optional`):
|
260 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
261 |
+
max_length_labels (:obj:`int`, `optional`):
|
262 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
263 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
264 |
+
If set will pad the sequence to a multiple of the provided value.
|
265 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
266 |
+
7.5 (Volta).
|
267 |
+
"""
|
268 |
+
|
269 |
+
processor: AutoProcessor
|
270 |
+
padding: Union[bool, str] = "longest"
|
271 |
+
pad_to_multiple_of: Optional[int] = None
|
272 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
273 |
+
|
274 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
275 |
+
# split inputs and labels since they have to be of different lenghts and need
|
276 |
+
# different padding methods
|
277 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
278 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
279 |
+
|
280 |
+
batch = self.processor.pad(
|
281 |
+
input_features,
|
282 |
+
padding=self.padding,
|
283 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
284 |
+
return_tensors="pt",
|
285 |
+
)
|
286 |
+
|
287 |
+
with self.processor.as_target_processor():
|
288 |
+
labels_batch = self.processor.pad(
|
289 |
+
label_features,
|
290 |
+
padding=self.padding,
|
291 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
292 |
+
return_tensors="pt",
|
293 |
+
)
|
294 |
+
|
295 |
+
# replace padding with -100 to ignore loss correctly
|
296 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
297 |
+
|
298 |
+
batch["labels"] = labels
|
299 |
+
|
300 |
+
return batch
|
301 |
+
|
302 |
+
|
303 |
+
def create_vocabulary_from_data(
|
304 |
+
datasets: DatasetDict,
|
305 |
+
word_delimiter_token: Optional[str] = None,
|
306 |
+
unk_token: Optional[str] = None,
|
307 |
+
pad_token: Optional[str] = None,
|
308 |
+
):
|
309 |
+
# Given training and test labels create vocabulary
|
310 |
+
def extract_all_chars(batch):
|
311 |
+
all_text = " ".join(batch["target_text"])
|
312 |
+
vocab = list(set(all_text))
|
313 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
314 |
+
|
315 |
+
vocabs = datasets.map(
|
316 |
+
extract_all_chars,
|
317 |
+
batched=True,
|
318 |
+
batch_size=-1,
|
319 |
+
keep_in_memory=True,
|
320 |
+
remove_columns=datasets["train"].column_names,
|
321 |
+
)
|
322 |
+
|
323 |
+
# take union of all unique characters in each dataset
|
324 |
+
vocab_set = functools.reduce(
|
325 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
326 |
+
)
|
327 |
+
|
328 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
329 |
+
|
330 |
+
# replace white space with delimiter token
|
331 |
+
if word_delimiter_token is not None:
|
332 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
333 |
+
del vocab_dict[" "]
|
334 |
+
|
335 |
+
# add unk and pad token
|
336 |
+
if unk_token is not None:
|
337 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
338 |
+
|
339 |
+
if pad_token is not None:
|
340 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
341 |
+
|
342 |
+
return vocab_dict
|
343 |
+
|
344 |
+
|
345 |
+
def main():
|
346 |
+
# See all possible arguments in src/transformers/training_args.py
|
347 |
+
# or by passing the --help flag to this script.
|
348 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
349 |
+
|
350 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
351 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
352 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
353 |
+
# let's parse it to get our arguments.
|
354 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
355 |
+
else:
|
356 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
357 |
+
|
358 |
+
# Detecting last checkpoint.
|
359 |
+
last_checkpoint = None
|
360 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
361 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
362 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
363 |
+
raise ValueError(
|
364 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
365 |
+
"Use --overwrite_output_dir to overcome."
|
366 |
+
)
|
367 |
+
elif last_checkpoint is not None:
|
368 |
+
logger.info(
|
369 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
370 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
371 |
+
)
|
372 |
+
|
373 |
+
# Setup logging
|
374 |
+
logging.basicConfig(
|
375 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
376 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
377 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
378 |
+
)
|
379 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
380 |
+
|
381 |
+
# Log on each process the small summary:
|
382 |
+
logger.warning(
|
383 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
384 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
385 |
+
)
|
386 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
387 |
+
if is_main_process(training_args.local_rank):
|
388 |
+
transformers.utils.logging.set_verbosity_info()
|
389 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
390 |
+
|
391 |
+
# Set seed before initializing model.
|
392 |
+
set_seed(training_args.seed)
|
393 |
+
|
394 |
+
# 1. First, let's load the dataset
|
395 |
+
raw_datasets = DatasetDict()
|
396 |
+
|
397 |
+
if training_args.do_train:
|
398 |
+
raw_datasets["train"] = load_dataset(
|
399 |
+
data_args.dataset_name,
|
400 |
+
data_args.dataset_config_name,
|
401 |
+
split=data_args.train_split_name,
|
402 |
+
use_auth_token=data_args.use_auth_token,
|
403 |
+
)
|
404 |
+
|
405 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
406 |
+
raise ValueError(
|
407 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
408 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
409 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
410 |
+
)
|
411 |
+
|
412 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
413 |
+
raise ValueError(
|
414 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
415 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
416 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
417 |
+
)
|
418 |
+
|
419 |
+
if data_args.max_train_samples is not None:
|
420 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
421 |
+
|
422 |
+
if training_args.do_eval:
|
423 |
+
raw_datasets["eval"] = load_dataset(
|
424 |
+
data_args.dataset_name,
|
425 |
+
data_args.dataset_config_name,
|
426 |
+
split=data_args.eval_split_name,
|
427 |
+
use_auth_token=data_args.use_auth_token,
|
428 |
+
)
|
429 |
+
|
430 |
+
if data_args.max_eval_samples is not None:
|
431 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
432 |
+
|
433 |
+
# 2. We remove some special characters from the datasets
|
434 |
+
# that make training complicated and do not help in transcribing the speech
|
435 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
436 |
+
# that could be easily picked up by the model
|
437 |
+
chars_to_ignore_regex = (
|
438 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
439 |
+
)
|
440 |
+
text_column_name = data_args.text_column_name
|
441 |
+
|
442 |
+
def remove_special_characters(batch):
|
443 |
+
if chars_to_ignore_regex is not None:
|
444 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
445 |
+
else:
|
446 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
447 |
+
return batch
|
448 |
+
|
449 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
450 |
+
raw_datasets = raw_datasets.map(
|
451 |
+
remove_special_characters,
|
452 |
+
remove_columns=[text_column_name],
|
453 |
+
desc="remove special characters from datasets",
|
454 |
+
)
|
455 |
+
|
456 |
+
# save special tokens for tokenizer
|
457 |
+
word_delimiter_token = data_args.word_delimiter_token
|
458 |
+
unk_token = data_args.unk_token
|
459 |
+
pad_token = data_args.pad_token
|
460 |
+
|
461 |
+
# 3. Next, let's load the config as we might need it to create
|
462 |
+
# the tokenizer
|
463 |
+
# load config
|
464 |
+
config = AutoConfig.from_pretrained(
|
465 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
466 |
+
)
|
467 |
+
|
468 |
+
# 4. Next, if no tokenizer file is defined,
|
469 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
470 |
+
# the training and evaluation datasets
|
471 |
+
# We need to make sure that only first rank saves vocabulary
|
472 |
+
# make sure all processes wait until vocab is created
|
473 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
474 |
+
tokenizer_kwargs = {}
|
475 |
+
if tokenizer_name_or_path is None:
|
476 |
+
# save vocab in training output dir
|
477 |
+
tokenizer_name_or_path = training_args.output_dir
|
478 |
+
|
479 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
480 |
+
|
481 |
+
with training_args.main_process_first():
|
482 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
483 |
+
os.remove(vocab_file)
|
484 |
+
|
485 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
486 |
+
if not os.path.isfile(vocab_file):
|
487 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
488 |
+
vocab_dict = create_vocabulary_from_data(
|
489 |
+
raw_datasets,
|
490 |
+
word_delimiter_token=word_delimiter_token,
|
491 |
+
unk_token=unk_token,
|
492 |
+
pad_token=pad_token,
|
493 |
+
)
|
494 |
+
|
495 |
+
# save vocab dict to be loaded into tokenizer
|
496 |
+
with open(vocab_file, "w") as file:
|
497 |
+
json.dump(vocab_dict, file)
|
498 |
+
|
499 |
+
# if tokenizer has just been created
|
500 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
501 |
+
tokenizer_kwargs = {
|
502 |
+
"config": config if config.tokenizer_class is not None else None,
|
503 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
504 |
+
"unk_token": unk_token,
|
505 |
+
"pad_token": pad_token,
|
506 |
+
"word_delimiter_token": word_delimiter_token,
|
507 |
+
}
|
508 |
+
|
509 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
510 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
511 |
+
# one local process can concurrently download model & vocab.
|
512 |
+
|
513 |
+
# load feature_extractor and tokenizer
|
514 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
515 |
+
tokenizer_name_or_path,
|
516 |
+
use_auth_token=data_args.use_auth_token,
|
517 |
+
**tokenizer_kwargs,
|
518 |
+
)
|
519 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
520 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
521 |
+
)
|
522 |
+
|
523 |
+
# adapt config
|
524 |
+
config.update(
|
525 |
+
{
|
526 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
527 |
+
"attention_dropout": model_args.attention_dropout,
|
528 |
+
"hidden_dropout": model_args.hidden_dropout,
|
529 |
+
"final_dropout": model_args.final_dropout,
|
530 |
+
"mask_time_prob": model_args.mask_time_prob,
|
531 |
+
"mask_time_length": model_args.mask_time_length,
|
532 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
533 |
+
"mask_feature_length": model_args.mask_feature_length,
|
534 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
535 |
+
"layerdrop": model_args.layerdrop,
|
536 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
537 |
+
"pad_token_id": tokenizer.pad_token_id,
|
538 |
+
"vocab_size": len(tokenizer),
|
539 |
+
"activation_dropout": model_args.activation_dropout,
|
540 |
+
}
|
541 |
+
)
|
542 |
+
|
543 |
+
# create model
|
544 |
+
model = AutoModelForCTC.from_pretrained(
|
545 |
+
model_args.model_name_or_path,
|
546 |
+
cache_dir=model_args.cache_dir,
|
547 |
+
config=config,
|
548 |
+
use_auth_token=data_args.use_auth_token,
|
549 |
+
)
|
550 |
+
|
551 |
+
# freeze encoder
|
552 |
+
if model_args.freeze_feature_encoder:
|
553 |
+
model.freeze_feature_encoder()
|
554 |
+
|
555 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
556 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
557 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
558 |
+
# via the `feature_extractor`
|
559 |
+
|
560 |
+
# make sure that dataset decodes audio with correct sampling rate
|
561 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
562 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
563 |
+
raw_datasets = raw_datasets.cast_column(
|
564 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
565 |
+
)
|
566 |
+
|
567 |
+
# derive max & min input length for sample rate & max duration
|
568 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
569 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
570 |
+
audio_column_name = data_args.audio_column_name
|
571 |
+
num_workers = data_args.preprocessing_num_workers
|
572 |
+
|
573 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
574 |
+
phoneme_language = data_args.phoneme_language
|
575 |
+
|
576 |
+
# Preprocessing the datasets.
|
577 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
578 |
+
def prepare_dataset(batch):
|
579 |
+
# load audio
|
580 |
+
sample = batch[audio_column_name]
|
581 |
+
|
582 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
583 |
+
batch["input_values"] = inputs.input_values[0]
|
584 |
+
batch["input_length"] = len(batch["input_values"])
|
585 |
+
|
586 |
+
# encode targets
|
587 |
+
additional_kwargs = {}
|
588 |
+
if phoneme_language is not None:
|
589 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
590 |
+
|
591 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
592 |
+
return batch
|
593 |
+
|
594 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
595 |
+
vectorized_datasets = raw_datasets.map(
|
596 |
+
prepare_dataset,
|
597 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
598 |
+
num_proc=num_workers,
|
599 |
+
desc="preprocess datasets",
|
600 |
+
)
|
601 |
+
|
602 |
+
def is_audio_in_length_range(length):
|
603 |
+
return length > min_input_length and length < max_input_length
|
604 |
+
|
605 |
+
# filter data that is shorter than min_input_length
|
606 |
+
vectorized_datasets = vectorized_datasets.filter(
|
607 |
+
is_audio_in_length_range,
|
608 |
+
num_proc=num_workers,
|
609 |
+
input_columns=["input_length"],
|
610 |
+
)
|
611 |
+
|
612 |
+
# 7. Next, we can prepare the training.
|
613 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
614 |
+
# instantiate a data collator and the trainer
|
615 |
+
|
616 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
617 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
618 |
+
|
619 |
+
# for large datasets it is advised to run the preprocessing on a
|
620 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
621 |
+
# be a timeout when running the script in distributed mode.
|
622 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
623 |
+
# cached dataset
|
624 |
+
if data_args.preprocessing_only:
|
625 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
626 |
+
return
|
627 |
+
|
628 |
+
def compute_metrics(pred):
|
629 |
+
pred_logits = pred.predictions
|
630 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
631 |
+
|
632 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
633 |
+
|
634 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
635 |
+
# we do not want to group tokens when computing the metrics
|
636 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
637 |
+
|
638 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
639 |
+
|
640 |
+
return metrics
|
641 |
+
|
642 |
+
# Now save everything to be able to create a single processor later
|
643 |
+
if is_main_process(training_args.local_rank):
|
644 |
+
# save feature extractor, tokenizer and config
|
645 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
646 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
647 |
+
config.save_pretrained(training_args.output_dir)
|
648 |
+
|
649 |
+
try:
|
650 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
651 |
+
except (OSError, KeyError):
|
652 |
+
warnings.warn(
|
653 |
+
"Loading a processor from a feature extractor config that does not"
|
654 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
655 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
656 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
657 |
+
FutureWarning,
|
658 |
+
)
|
659 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
660 |
+
|
661 |
+
# Instantiate custom data collator
|
662 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
663 |
+
|
664 |
+
# Initialize Trainer
|
665 |
+
trainer = Trainer(
|
666 |
+
model=model,
|
667 |
+
data_collator=data_collator,
|
668 |
+
args=training_args,
|
669 |
+
compute_metrics=compute_metrics,
|
670 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
671 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
672 |
+
tokenizer=feature_extractor,
|
673 |
+
)
|
674 |
+
|
675 |
+
# 8. Finally, we can start training
|
676 |
+
|
677 |
+
# Training
|
678 |
+
if training_args.do_train:
|
679 |
+
|
680 |
+
# use last checkpoint if exist
|
681 |
+
if last_checkpoint is not None:
|
682 |
+
checkpoint = last_checkpoint
|
683 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
684 |
+
checkpoint = model_args.model_name_or_path
|
685 |
+
else:
|
686 |
+
checkpoint = None
|
687 |
+
|
688 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
689 |
+
trainer.save_model()
|
690 |
+
|
691 |
+
metrics = train_result.metrics
|
692 |
+
max_train_samples = (
|
693 |
+
data_args.max_train_samples
|
694 |
+
if data_args.max_train_samples is not None
|
695 |
+
else len(vectorized_datasets["train"])
|
696 |
+
)
|
697 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
698 |
+
|
699 |
+
trainer.log_metrics("train", metrics)
|
700 |
+
trainer.save_metrics("train", metrics)
|
701 |
+
trainer.save_state()
|
702 |
+
|
703 |
+
# Evaluation
|
704 |
+
results = {}
|
705 |
+
if training_args.do_eval:
|
706 |
+
logger.info("*** Evaluate ***")
|
707 |
+
metrics = trainer.evaluate()
|
708 |
+
max_eval_samples = (
|
709 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
710 |
+
)
|
711 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
712 |
+
|
713 |
+
trainer.log_metrics("eval", metrics)
|
714 |
+
trainer.save_metrics("eval", metrics)
|
715 |
+
|
716 |
+
# Write model card and (optionally) push to hub
|
717 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
718 |
+
kwargs = {
|
719 |
+
"finetuned_from": model_args.model_name_or_path,
|
720 |
+
"tasks": "speech-recognition",
|
721 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
722 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
723 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
724 |
+
}
|
725 |
+
if "common_voice" in data_args.dataset_name:
|
726 |
+
kwargs["language"] = config_name
|
727 |
+
|
728 |
+
if training_args.push_to_hub:
|
729 |
+
trainer.push_to_hub(**kwargs)
|
730 |
+
else:
|
731 |
+
trainer.create_model_card(**kwargs)
|
732 |
+
|
733 |
+
return results
|
734 |
+
|
735 |
+
|
736 |
+
if __name__ == "__main__":
|
737 |
+
main()
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ac9126d8e40ef2b4777d784e17705def6720cee411288fde206b31f5e389f9a
|
3 |
+
size 2991
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"،": 1, "؟": 2, "ء": 3, "آ": 4, "ؤ": 5, "ئ": 6, "ا": 7, "ب": 8, "ت": 9, "ث": 10, "ج": 11, "ح": 12, "خ": 13, "د": 14, "ذ": 15, "ر": 16, "ز": 17, "س": 18, "ش": 19, "ص": 20, "ض": 21, "ط": 22, "ظ": 23, "ع": 24, "غ": 25, "ف": 26, "ق": 27, "ل": 28, "م": 29, "ن": 30, "و": 31, "ى": 32, "ي": 33, "ً": 34, "َ": 35, "ُ": 36, "ِ": 37, "ّ": 38, "ٓ": 39, "ٔ": 40, "ٰ": 41, "ٹ": 42, "پ": 43, "چ": 44, "ڈ": 45, "ڑ": 46, "ژ": 47, "ک": 48, "گ": 49, "ں": 50, "ھ": 51, "ہ": 52, "ۂ": 53, "ی": 54, "ے": 55, "۔": 56, "|": 0, "[UNK]": 57, "[PAD]": 58}
|