Hasano20 commited on
Commit
7387b65
·
verified ·
1 Parent(s): 241ef62

End of training

Browse files
Files changed (4) hide show
  1. README.md +51 -180
  2. config.json +86 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,70 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: beit-base-finetuned-ade-640-640
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB
9
+ results: []
10
  ---
11
 
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
 
15
+ # BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB
16
 
17
+ This model is a fine-tuned version of [beit-base-finetuned-ade-640-640](https://huggingface.co/beit-base-finetuned-ade-640-640) on the Hasano20/Clean-Set1 dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0603
20
+ - Mean Iou: 0.9672
21
+ - Mean Accuracy: 0.9774
22
+ - Overall Accuracy: 0.9930
23
+ - Accuracy Background: 0.9961
24
+ - Accuracy Melt: 0.9392
25
+ - Accuracy Substrate: 0.9971
26
+ - Iou Background: 0.9929
27
+ - Iou Melt: 0.9207
28
+ - Iou Substrate: 0.9879
29
 
30
+ ## Model description
31
 
32
+ More information needed
33
 
34
+ ## Intended uses & limitations
35
 
36
+ More information needed
37
 
38
+ ## Training and evaluation data
39
 
40
+ More information needed
 
 
 
 
 
 
41
 
42
+ ## Training procedure
43
 
44
+ ### Training hyperparameters
45
 
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: cosine
53
+ - lr_scheduler_warmup_steps: 200
54
+ - num_epochs: 20
55
 
56
+ ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
59
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
60
+ | 0.3924 | 5.5556 | 50 | 0.3038 | 0.9022 | 0.9499 | 0.9809 | 0.9854 | 0.8738 | 0.9906 | 0.9853 | 0.7493 | 0.9719 |
61
+ | 0.0857 | 11.1111 | 100 | 0.0788 | 0.9656 | 0.9771 | 0.9931 | 0.9972 | 0.9377 | 0.9964 | 0.9939 | 0.9146 | 0.9883 |
62
+ | 0.0816 | 16.6667 | 150 | 0.0603 | 0.9672 | 0.9774 | 0.9930 | 0.9961 | 0.9392 | 0.9971 | 0.9929 | 0.9207 | 0.9879 |
63
 
 
64
 
65
+ ### Framework versions
66
 
67
+ - Transformers 4.41.2
68
+ - Pytorch 2.0.1+cu117
69
+ - Datasets 2.19.2
70
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/beit-base-finetuned-ade-640-640",
3
+ "add_fpn": false,
4
+ "architectures": [
5
+ "BeitForSemanticSegmentation"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.0,
8
+ "auxiliary_channels": 256,
9
+ "auxiliary_concat_input": false,
10
+ "auxiliary_loss_weight": 0.4,
11
+ "auxiliary_num_convs": 1,
12
+ "drop_path_rate": 0.1,
13
+ "hidden_act": "gelu",
14
+ "hidden_dropout_prob": 0.0,
15
+ "hidden_size": 768,
16
+ "id2label": {
17
+ "0": "background",
18
+ "1": "melt",
19
+ "2": "substrate"
20
+ },
21
+ "image_size": 640,
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "background": 0,
26
+ "melt": 1,
27
+ "substrate": 2
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "layer_scale_init_value": 0.1,
31
+ "model_type": "beit",
32
+ "num_attention_heads": 12,
33
+ "num_channels": 3,
34
+ "num_hidden_layers": 12,
35
+ "out_features": [
36
+ "stage3",
37
+ "stage5",
38
+ "stage7",
39
+ "stage11"
40
+ ],
41
+ "out_indices": [
42
+ 3,
43
+ 5,
44
+ 7,
45
+ 11
46
+ ],
47
+ "patch_size": 16,
48
+ "pool_scales": [
49
+ 1,
50
+ 2,
51
+ 3,
52
+ 6
53
+ ],
54
+ "reshape_hidden_states": true,
55
+ "segmentation_indices": [
56
+ 3,
57
+ 5,
58
+ 7,
59
+ 11
60
+ ],
61
+ "semantic_loss_ignore_index": 255,
62
+ "stage_names": [
63
+ "stem",
64
+ "stage1",
65
+ "stage2",
66
+ "stage3",
67
+ "stage4",
68
+ "stage5",
69
+ "stage6",
70
+ "stage7",
71
+ "stage8",
72
+ "stage9",
73
+ "stage10",
74
+ "stage11",
75
+ "stage12"
76
+ ],
77
+ "torch_dtype": "float32",
78
+ "transformers_version": "4.41.2",
79
+ "use_absolute_position_embeddings": false,
80
+ "use_auxiliary_head": true,
81
+ "use_mask_token": false,
82
+ "use_mean_pooling": true,
83
+ "use_relative_position_bias": true,
84
+ "use_shared_relative_position_bias": false,
85
+ "vocab_size": 8192
86
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ab1b7149c4b97d6f2230e3b3c5e3aff0f54be430ed0065d3fdcfed200ba5bfa
3
+ size 653146272
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec72d73a340049754e8e3d0c21ab30ed921a6295f939275a18c80947a3a01b83
3
+ size 4923