--- license: other base_model: microsoft/beit-base-finetuned-ade-640-640 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB results: [] pipeline_tag: image-segmentation --- # BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB This model is a fine-tuned version of [microsoft/beit-base-finetuned-ade-640-640](https://huggingface.co/microsoft/beit-base-finetuned-ade-640-640) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0603 - Mean Iou: 0.9672 - Mean Accuracy: 0.9774 - Overall Accuracy: 0.9930 - Accuracy Background: 0.9961 - Accuracy Melt: 0.9392 - Accuracy Substrate: 0.9971 - Iou Background: 0.9929 - Iou Melt: 0.9207 - Iou Substrate: 0.9879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate | |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:| | 0.3924 | 5.5556 | 50 | 0.3038 | 0.9022 | 0.9499 | 0.9809 | 0.9854 | 0.8738 | 0.9906 | 0.9853 | 0.7493 | 0.9719 | | 0.0857 | 11.1111 | 100 | 0.0788 | 0.9656 | 0.9771 | 0.9931 | 0.9972 | 0.9377 | 0.9964 | 0.9939 | 0.9146 | 0.9883 | | 0.0816 | 16.6667 | 150 | 0.0603 | 0.9672 | 0.9774 | 0.9930 | 0.9961 | 0.9392 | 0.9971 | 0.9929 | 0.9207 | 0.9879 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.1+cu117 - Datasets 2.19.2 - Tokenizers 0.19.1