--- license: other base_model: nvidia/mit-b5 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: SegFormer_Clean_Set1_240430_V2-Augmented_mit-b5_RGB results: [] --- # SegFormer_Clean_Set1_240430_V2-Augmented_mit-b5_RGB This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Clean_Set1_240430_V2-Augmented dataset. It achieves the following results on the evaluation set: - Loss: 0.4812 - Mean Iou: 0.6072 - Mean Accuracy: 0.6905 - Overall Accuracy: 0.8761 - Accuracy Background: 0.8967 - Accuracy Melt: 0.2439 - Accuracy Substrate: 0.9311 - Iou Background: 0.8325 - Iou Melt: 0.1423 - Iou Substrate: 0.8467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:| | 0.2826 | 6.6667 | 20 | 0.4812 | 0.6072 | 0.6905 | 0.8761 | 0.8967 | 0.2439 | 0.9311 | 0.8325 | 0.1423 | 0.8467 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.1+cu117 - Datasets 2.19.2 - Tokenizers 0.19.1