File size: 5,221 Bytes
543c00a 82e84ea 543c00a 82e84ea 543c00a 0188367 8efaee1 0188367 543c00a e5c6fb4 26cb970 7c636a5 e5c6fb4 e176d3e e5c6fb4 e176d3e e5c6fb4 26cb970 82e84ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
license: llama3.1
library_name: transformers
tags:
- not-for-all-audiences
model-index:
- name: Llama-3.1-Jamet-8B-MK.I
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 73.38
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.5
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 12.54
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.24
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.14
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.58
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Hastagaras/Llama-3.1-Jamet-8B-MK.I
name: Open LLM Leaderboard
---
Test model, the base is llama 3.1 instruct abliterated. Context limit unknown
System:
```
### Roleplay Instructions
- Be {{char}}, naturally and consistently
- React realistically to {{user}}, never control their actions
- Stay in character at all times
```
or something similar, just make sure to add: **### Roleplay Instructions**
this model is uncensored, maybe too much... in RP scenario (for me)
dataset:
* C2logs that I cleaned a long time ago
* Freedom RP, but it seems it’s already removed from HF
* Stories from Reddit
* Gemma data from: [argilla-warehouse/magpie-ultra-v1.0-gemma](https://huggingface.co/datasets/argilla-warehouse/magpie-ultra-v1.0-gemma), just a small subset
* Reflection data, from here: [PJMixers-Dev/Weyaxi_HelpSteer-filtered-Reflection-Gemini-1.5-Flash-ShareGPT](https://huggingface.co/datasets/PJMixers-Dev/Weyaxi_HelpSteer-filtered-Reflection-Gemini-1.5-Flash-ShareGPT). It’s generated by Gemini, and I was like, “Oh, I can make a Google-themed model with this and Gemma data.”
* Toxic data: [NobodyExistsOnTheInternet/ToxicQAFinal](NobodyExistsOnTheInternet/ToxicQAFinal) to make it toxic
* And lastly, just my dump—RP, general, etc., with some of it also generated by Gemini.
so yeah, most of the data is from Google, and only the RP data is from Claude.
you can expect some differences in terms of style (a lot of markdown), but don’t expect this model to be as smart as the instruct
Feedback is greatly appreciated for future improvements (hopefully)
Technical Details:
```
Base model
v
finetuned the lm_head, embed_tokens and first layer (0)
v
finetune it again, layer 1-2
v
again, but this time using Lora, 64 rank
v
then merge the lora
---
the abliterated instruct
v
same, finetuned the lm_head, embed_tokens and first layer (0)
v
still the same, finetune it again, layer 1-2
v
finetune middle layers
v
merged the previous Lora with this finetuned abliterated model
---
finnaly, merge the two model using ties
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Hastagaras__Llama-3.1-Jamet-8B-MK.I)
| Metric |Value|
|-------------------|----:|
|Avg. |25.40|
|IFEval (0-Shot) |73.38|
|BBH (3-Shot) |29.50|
|MATH Lvl 5 (4-Shot)|12.54|
|GPQA (0-shot) | 3.24|
|MuSR (0-shot) | 6.14|
|MMLU-PRO (5-shot) |27.58|
|