--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - sermonar metrics: - wer model-index: - name: whisper small ar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: sermonarr type: sermonar config: ar split: test[:2%] args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 150.6172839506173 --- # whisper small ar This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the sermonarr dataset. It achieves the following results on the evaluation set: - Loss: 0.5258 - Wer: 150.6173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8749 | 0.32 | 1000 | 0.5855 | 150.4274 | | 0.6537 | 0.65 | 2000 | 0.5461 | 130.5793 | | 0.7103 | 0.97 | 3000 | 0.5241 | 278.2526 | | 0.6544 | 1.29 | 4000 | 0.5258 | 150.6173 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3