import pandas as pd import numpy as np from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.losses import BinaryCrossentropy from sklearn.model_selection import train_test_split from sklearn.model_selection import RandomizedSearchCV from scikeras.wrappers import KerasClassifier def create_stats(roster, schedule): home_stats = [] away_stats = [] S = [] # Loading Relavent Columns from f-test cols = ['TEAM','PTS/G', 'ORB', 'DRB', 'AST', 'STL', 'BLK', 'TOV', '3P%', 'FT%','2P'] new_roster = roster[cols] for i in schedule['Home/Neutral']: home_stats.append((new_roster[new_roster['TEAM'] == i]).values.tolist()) for i in schedule['Visitor/Neutral']: away_stats.append((new_roster.loc[new_roster['TEAM'] == i]).values.tolist()) for i in range(len(home_stats)): arr = [] for j in range(len(home_stats[i])): del home_stats[i][j][0] arr += home_stats[i][j] for j in range(len(away_stats[i])): del away_stats[i][j][0] arr += away_stats[i][j] # Create numpy array with all the players on the Home Team's Stats followed by the Away Team's stats S.append(np.nan_to_num(np.array(arr), copy=False)) return S roster = pd.read_csv('player_stats.txt', delimiter=',') schedule = pd.read_csv('schedule.txt', delimiter=',') # Create winning condition to train on schedule['winner'] = schedule.apply(lambda x: 0 if x['PTS'] > x['PTS.1'] else 1, axis=1) X = np.array(create_stats(roster, schedule)) y = np.array(schedule['winner']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) def create_model(optimizer='rmsprop', init='glorot_uniform'): inputs = keras.Input(shape=(100,)) dense = layers.Dense(50, activation="relu") x = dense(inputs) x = layers.Dense(64, activation="relu")(x) outputs = layers.Dense(1, activation='sigmoid')(x) model = keras.Model(inputs=inputs, outputs=outputs, name="nba_model") model.compile(loss=BinaryCrossentropy(from_logits=False), optimizer=optimizer, metrics=["accuracy"]) return model model = KerasClassifier(model=create_model, verbose=0, init='glorot_uniform') optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam'] init = ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform'] epochs = [500, 1000, 1500] batches = [50, 100, 200] param_grid = dict(optimizer=optimizer, epochs=epochs, batch_size=batches, init=init) random_search = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100, verbose=3) random_search_result = random_search.fit(X_train, y_train) best_model = random_search_result.best_estimator_ best_model.model_.save('winner.keras') best_parameters = random_search_result.best_params_ print("Best parameters: ", best_parameters) test_accuracy = random_search_result.best_estimator_.score(X_test, y_test) print("Test accuracy: ", test_accuracy)