HelloAbhi004 commited on
Commit
78c6515
·
verified ·
1 Parent(s): 45e9bbc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -165
README.md CHANGED
@@ -11,197 +11,53 @@ tags:
11
  - code
12
  - not-for-all-audiences
13
  ---
14
- # Model Card for Model ID
15
 
16
- <!-- Provide a quick summary of what the model is/does. -->
17
 
18
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
19
 
20
  ## Model Details
21
 
22
  ### Model Description
23
 
24
- <!-- Provide a longer summary of what this model is. -->
25
 
26
-
27
-
28
- - **Developed by:** [More Information Needed]
29
- - **Funded by [optional]:** [More Information Needed]
30
- - **Shared by [optional]:** [More Information Needed]
31
- - **Model type:** [More Information Needed]
32
- - **Language(s) (NLP):** [More Information Needed]
33
- - **License:** [More Information Needed]
34
- - **Finetuned from model [optional]:** [More Information Needed]
35
-
36
- ### Model Sources [optional]
37
-
38
- <!-- Provide the basic links for the model. -->
39
-
40
- - **Repository:** [More Information Needed]
41
- - **Paper [optional]:** [More Information Needed]
42
- - **Demo [optional]:** [More Information Needed]
43
 
44
  ## Uses
45
 
46
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
-
48
  ### Direct Use
49
 
50
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
-
52
- [More Information Needed]
53
-
54
- ### Downstream Use [optional]
55
-
56
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
-
58
- [More Information Needed]
59
 
60
  ### Out-of-Scope Use
61
 
62
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
63
-
64
- [More Information Needed]
65
 
66
  ## Bias, Risks, and Limitations
67
 
68
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
69
-
70
- [More Information Needed]
71
 
72
  ### Recommendations
73
 
74
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
75
-
76
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
77
 
78
  ## How to Get Started with the Model
79
 
80
- Use the code below to get started with the model.
81
-
82
- [More Information Needed]
83
-
84
- ## Training Details
85
-
86
- ### Training Data
87
-
88
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
89
-
90
- [More Information Needed]
91
-
92
- ### Training Procedure
93
-
94
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
95
-
96
- #### Preprocessing [optional]
97
-
98
- [More Information Needed]
99
-
100
-
101
- #### Training Hyperparameters
102
-
103
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
104
-
105
- #### Speeds, Sizes, Times [optional]
106
-
107
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
108
-
109
- [More Information Needed]
110
-
111
- ## Evaluation
112
-
113
- <!-- This section describes the evaluation protocols and provides the results. -->
114
-
115
- ### Testing Data, Factors & Metrics
116
-
117
- #### Testing Data
118
-
119
- <!-- This should link to a Dataset Card if possible. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Factors
124
-
125
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
126
-
127
- [More Information Needed]
128
-
129
- #### Metrics
130
-
131
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
132
-
133
- [More Information Needed]
134
-
135
- ### Results
136
-
137
- [More Information Needed]
138
-
139
- #### Summary
140
-
141
-
142
-
143
- ## Model Examination [optional]
144
-
145
- <!-- Relevant interpretability work for the model goes here -->
146
-
147
- [More Information Needed]
148
-
149
- ## Environmental Impact
150
-
151
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
152
-
153
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
154
-
155
- - **Hardware Type:** [More Information Needed]
156
- - **Hours used:** [More Information Needed]
157
- - **Cloud Provider:** [More Information Needed]
158
- - **Compute Region:** [More Information Needed]
159
- - **Carbon Emitted:** [More Information Needed]
160
-
161
- ## Technical Specifications [optional]
162
-
163
- ### Model Architecture and Objective
164
-
165
- [More Information Needed]
166
-
167
- ### Compute Infrastructure
168
-
169
- [More Information Needed]
170
-
171
- #### Hardware
172
-
173
- [More Information Needed]
174
-
175
- #### Software
176
-
177
- [More Information Needed]
178
-
179
- ## Citation [optional]
180
-
181
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
182
-
183
- **BibTeX:**
184
-
185
- [More Information Needed]
186
-
187
- **APA:**
188
-
189
- [More Information Needed]
190
-
191
- ## Glossary [optional]
192
-
193
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
194
-
195
- [More Information Needed]
196
-
197
- ## More Information [optional]
198
-
199
- [More Information Needed]
200
 
201
- ## Model Card Authors [optional]
 
202
 
203
- [More Information Needed]
 
204
 
205
- ## Model Card Contact
 
 
 
206
 
207
- [More Information Needed]
 
 
11
  - code
12
  - not-for-all-audiences
13
  ---
 
14
 
15
+ # Model Card for Real vs. Fake Image Classifier
16
 
17
+ This model is designed to classify images as either "real" or "fake" using a Convolutional Neural Network (CNN) built with TensorFlow Keras.
18
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
+ This CNN model has been developed to differentiate between real and fake images. It utilizes various convolutional layers, pooling layers, and dense layers to effectively learn features from the input images, enabling accurate classification.
24
 
25
+ - **Developed by:** [Abhishek Thakur, Mihir Vaid]
26
+ - **Model type:** Image Classification (CNN)
27
+ - **License:** MIT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ## Uses
30
 
 
 
31
  ### Direct Use
32
 
33
+ This model can be used directly for image classification tasks without the need for further fine-tuning. Users can input images, and the model will output a classification of "real" or "fake."
 
 
 
 
 
 
 
 
34
 
35
  ### Out-of-Scope Use
36
 
37
+ This model is not intended for use in critical applications where misclassification could lead to significant consequences, such as security or legal decisions.
 
 
38
 
39
  ## Bias, Risks, and Limitations
40
 
41
+ While the model aims to provide accurate classifications, it may exhibit biases based on the training data. Users should be aware of potential limitations in performance across different types of images or contexts.
 
 
42
 
43
  ### Recommendations
44
 
45
+ Users should validate the model's predictions with additional methods when deploying it in sensitive applications.
 
 
46
 
47
  ## How to Get Started with the Model
48
 
49
+ To use this model, you can load it using TensorFlow Keras as shown below:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ ```python
52
+ import tensorflow as tf
53
 
54
+ # Load your trained model
55
+ model = tf.keras.models.load_model('path/to/your/model')
56
 
57
+ # Example prediction
58
+ image = tf.keras.preprocessing.image.load_img('path/to/image.jpg', target_size=(image_height, image_width))
59
+ image_array = tf.keras.preprocessing.image.img_to_array(image)
60
+ image_array = tf.expand_dims(image_array, axis=0)
61
 
62
+ predictions = model.predict(image_array)
63
+ print("Predicted class:", "Real" if predictions > 0.5 else "Fake")