uwesis commited on
Commit
eb67f70
1 Parent(s): 5200116

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # **Scaling Image Tokenizers with Grouped Spherical Quantization**
2
+ ---
3
+
4
+ [Paper link](https://arxiv.org/abs/2412.02632) | [GITHUB REPO](https://github.com/HelmholtzAI-FZJ/flex_gen) [HF Checkpoints](https://huggingface.co/collections/HelmholtzAI-FZJ/grouped-spherical-quantization-674d6f9f548e472d0eaf179e)
5
+
6
+ In [GSQ](https://arxiv.org/abs/2412.02632), we show the optimized training hyper-parameters and configs for quantization based image tokenizer. We also show how to scale the latent, vocab size etc. appropriately to achieve better reconstruction performance.
7
+
8
+ ![dim-vocab-scaling.png](./https://github.com/HelmholtzAI-FZJ/flex_gen/raw/main/figures/dim-vocab-scaling.png)
9
+
10
+ We also show how to scaling the latent (and group) appropriately when pursuing high down-sample ratio in compression.
11
+
12
+ ![spatial_scale.png](./https://github.com/HelmholtzAI-FZJ/flex_gen/raw/main/figures/spatial_scale.png)
13
+
14
+ The group scaling experiment of GSQ:
15
+
16
+ ---
17
+ | **Models** | \( G $\times$ d \) | **rFID ↓** | **IS ↑** | **LPIPS ↓** | **PSNR ↑** | **SSIM ↑** | **Usage ↑** | **PPL ↑** |
18
+ |--------------------------------------|---------------------|------------|----------|-------------|------------|------------|-------------|-------------|
19
+ | **GSQ F8-D64** \( V=8K \) | \( 1 $\times$ 64 \) | 0.63 | 205 | 0.08 | 22.95 | 0.67 | 99.87% | 8,055 |
20
+ | | \( 2 $\times$ 32 \) | 0.32 | 220 | 0.05 | 25.42 | 0.76 | 100% | 8,157 |
21
+ | | \( 4 $\times$ 16 \) | 0.18 | 226 | 0.03 | 28.02 | 0.08 | 100% | 8,143 |
22
+ | | \( 16 $\times$ 4 \) | **0.03** | **233** | **0.004** | **34.61** | **0.91** | **99.98%** | **6,775** |
23
+ | **GSQ F16-D16** \( V=256K \) | \( 1 $\times$ 16 \) | 1.42 | 179 | 0.13 | 20.70 | 0.56 | 100% | 254,044 |
24
+ | | \( 2 $\times$ 8 \) | 0.82 | 199 | 0.09 | 22.20 | 0.63 | 100% | 257,273 |
25
+ | | \( 4 $\times$ 4 \) | 0.74 | 202 | 0.08 | 22.75 | 0.63 | 62.46% | 43,767 |
26
+ | | \( 8 $\times$ 2 \) | 0.50 | 211 | 0.06 | 23.62 | 0.66 | 46.83% | 22,181 |
27
+ | | \( 16 $\times$ 1 \) | 0.52 | 210 | 0.06 | 23.54 | 0.66 | 50.81% | 181 |
28
+ | | \( 16 $\times$ 1^* \) | 0.51 | 210 | 0.06 | 23.52 | 0.66 | 52.64% | 748 |
29
+ | **GSQ F32-D32** \( V=256K \) | \( 1 $\times$ 32 \) | 6.84 | 95 | 0.24 | 17.83 | 0.40 | 100% | 245,715 |
30
+ | | \( 2 $\times$ 16 \) | 3.31 | 139 | 0.18 | 19.01 | 0.47 | 100% | 253,369 |
31
+ | | \( 4 $\times$ 8 \) | 1.77 | 173 | 0.13 | 20.60 | 0.53 | 100% | 253,199 |
32
+ | | \( 8 $\times$ 4 \) | 1.67 | 176 | 0.12 | 20.88 | 0.54 | 59% | 40,307 |
33
+ | | \( 16 $\times$ 2 \) | 1.13 | 190 | 0.10 | 21.73 | 0.57 | 46% | 30,302 |
34
+ | | \( 32 $\times$ 1 \) | 1.21 | 187 | 0.10 | 21.64 | 0.57 | 54% | 247 |
35
+ ---
36
+
37
+
38
+ ## Use Pre-trained GSQ-Tokenizer
39
+
40
+ ```python
41
+ from flex_gen import autoencoders
42
+ from timm import create_model
43
+
44
+ # ============= From HF's repo
45
+ model=create_model('flexTokenizer', pretrained=True,
46
+ repo_id='HelmholtzAI-FZJ/GSQ-F8-D8-V64k',)
47
+
48
+ # ============= From Local Checkpoint
49
+ model=create_model('flexTokenizer', pretrained=True,
50
+ path='PATH/your_checkpoint.pt', )
51
+ ```
52
+
53
+ ---
54
+
55
+ ## Training your tokenizer
56
+
57
+ ### Set-up Python Virtual Environment
58
+
59
+ ```python
60
+ sh gen_env/setup.sh
61
+
62
+ source ./gen_env/activate.sh
63
+
64
+ #! This will run pip install to download all required lib
65
+ sh ./gen_env/install_requirements.sh
66
+
67
+ ```
68
+
69
+ ### Run Training
70
+
71
+ ```python
72
+ # Single GPU
73
+ python -W ignore ./scripts/train_autoencoder.py
74
+
75
+ # Multi GPU
76
+ torchrun --nnodes=1 --nproc_per_node=4 ./scripts/train_autoencoder.py --config-file=PATH/config_name.yaml \
77
+ --output_dir=./logs_test/test opts train.num_train_steps=100 train_batch_size=16
78
+ ```
79
+
80
+ ### Run Evaluation
81
+
82
+ Add the checkpoint path that your want to test in `evaluation/run_tokenizer_eval.sh`
83
+
84
+ ```bash
85
+ # For example
86
+ ...
87
+ configs_of_training_lists=()
88
+ configs_of_training_lists=("logs_test/test/")
89
+ ...
90
+ ```
91
+
92
+ And run `sh evaluation/run_tokenizer_eval.sh` it will automatically scan `folder/model/eval_xxx.pth` for tokenizer evaluation
93
+
94
+ ---
95
+
96
+ # **Citation**
97
+
98
+ ```bash
99
+ @misc{GSQ,
100
+ title={Scaling Image Tokenizers with Grouped Spherical Quantization},
101
+ author={Jiangtao Wang and Zhen Qin and Yifan Zhang and Vincent Tao Hu and Björn Ommer and Rania Briq and Stefan Kesselheim},
102
+ year={2024},
103
+ eprint={2412.02632},
104
+ archivePrefix={arXiv},
105
+ primaryClass={cs.CV},
106
+ url={https://arxiv.org/abs/2412.02632},
107
+ }
108
+ ```