File size: 3,161 Bytes
098bfae 1f663e7 098bfae cd3cb0c ed0317f cd3cb0c ed0317f cd3cb0c ed0317f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
tags:
- translation
license: apache-2.0
---
### opus-mt-ru-en
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
## Model Details
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Transformer-align
- **Language(s):**
- Source Language: Russian
- Target Language: English
- **License:** Apache-2.0
- **Resources for more information:**
- [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Uses
#### Direct Use
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
Further details about the dataset for this model can be found in the OPUS readme: [ru-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ru-en/README.md)
## Training
#### Training Data
##### Preprocessing
* Pre-processing: Normalization + SentencePiece
* Dataset: [opus](https://github.com/Helsinki-NLP/Opus-MT)
* Download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/ru-en/opus-2020-02-26.zip)
* Test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-en/opus-2020-02-26.test.txt)
## Evaluation
#### Results
* test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-en/opus-2020-02-26.eval.txt)
#### Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| newstest2012.ru.en | 34.8 | 0.603 |
| newstest2013.ru.en | 27.9 | 0.545 |
| newstest2014-ruen.ru.en | 31.9 | 0.591 |
| newstest2015-enru.ru.en | 30.4 | 0.568 |
| newstest2016-enru.ru.en | 30.1 | 0.565 |
| newstest2017-enru.ru.en | 33.4 | 0.593 |
| newstest2018-enru.ru.en | 29.6 | 0.565 |
| newstest2019-ruen.ru.en | 31.4 | 0.576 |
| Tatoeba.ru.en | 61.1 | 0.736 |
## Citation Information
```bibtex
@InProceedings{TiedemannThottingal:EAMT2020,
author = {J{\"o}rg Tiedemann and Santhosh Thottingal},
title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld},
booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)},
year = {2020},
address = {Lisbon, Portugal}
}
```
## How to Get Started With the Model
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
```
|