File size: 5,915 Bytes
439f878 318e13e 439f878 318e13e 439f878 318e13e 439f878 426efbf 439f878 eab0d02 439f878 eab0d02 439f878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
language:
- hu
- uk
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-base-uk-hu
results:
- task:
name: Translation ukr-hun
type: translation
args: ukr-hun
dataset:
name: flores101-devtest
type: flores_101
args: ukr hun devtest
metrics:
- name: BLEU
type: bleu
value: 20.2
- task:
name: Translation ukr-hun
type: translation
args: ukr-hun
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ukr-hun
metrics:
- name: BLEU
type: bleu
value: 44.0
---
# opus-mt-tc-base-uk-hu
Neural machine translation model for translating from Ukrainian (uk) to Hungarian (hu).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-08
* source language(s): ukr
* target language(s): hun
* model: transformer-align
* data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+pft_transformer-align_2022-03-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opusTCv20210807+pft_transformer-align_2022-03-08.zip)
* more information released models: [OPUS-MT ukr-hun README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-hun/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"Я тобі винний 1000 доларів.",
"Я п'ю воду."
]
model_name = "pytorch-models/opus-mt-tc-base-uk-hu"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# 1000 dollár a te hibád.
# Vizet iszom.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-uk-hu")
print(pipe("Я тобі винний 1000 доларів."))
# expected output: 1000 dollár a te hibád.
```
## Benchmarks
* test set translations: [opusTCv20210807+pft_transformer-align_2022-03-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opusTCv20210807+pft_transformer-align_2022-03-08.test.txt)
* test set scores: [opusTCv20210807+pft_transformer-align_2022-03-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opusTCv20210807+pft_transformer-align_2022-03-08.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| ukr-hun | tatoeba-test-v2021-08-07 | 0.67544 | 44.0 | 473 | 2472 |
| ukr-hun | flores101-devtest | 0.51953 | 20.2 | 1012 | 22183 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: f084bad
* port time: Wed Mar 23 21:54:12 EET 2022
* port machine: LM0-400-22516.local
|