--- library_name: transformers language: - br - cy - de - en - es - fr - ga - gd - gv - kw - pt tags: - translation - opus-mt-tc-bible license: apache-2.0 model-index: - name: opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa results: - task: name: Translation cym-deu type: translation args: cym-deu dataset: name: flores200-devtest type: flores200-devtest args: cym-deu metrics: - name: BLEU type: bleu value: 22.6 - name: chr-F type: chrf value: 0.52745 - task: name: Translation cym-eng type: translation args: cym-eng dataset: name: flores200-devtest type: flores200-devtest args: cym-eng metrics: - name: BLEU type: bleu value: 55.5 - name: chr-F type: chrf value: 0.75234 - task: name: Translation cym-fra type: translation args: cym-fra dataset: name: flores200-devtest type: flores200-devtest args: cym-fra metrics: - name: BLEU type: bleu value: 31.4 - name: chr-F type: chrf value: 0.58339 - task: name: Translation cym-por type: translation args: cym-por dataset: name: flores200-devtest type: flores200-devtest args: cym-por metrics: - name: BLEU type: bleu value: 18.3 - name: chr-F type: chrf value: 0.47566 - task: name: Translation cym-spa type: translation args: cym-spa dataset: name: flores200-devtest type: flores200-devtest args: cym-spa metrics: - name: BLEU type: bleu value: 19.9 - name: chr-F type: chrf value: 0.48834 - task: name: Translation gla-deu type: translation args: gla-deu dataset: name: flores200-devtest type: flores200-devtest args: gla-deu metrics: - name: BLEU type: bleu value: 13.0 - name: chr-F type: chrf value: 0.41962 - task: name: Translation gla-eng type: translation args: gla-eng dataset: name: flores200-devtest type: flores200-devtest args: gla-eng metrics: - name: BLEU type: bleu value: 26.4 - name: chr-F type: chrf value: 0.53374 - task: name: Translation gla-fra type: translation args: gla-fra dataset: name: flores200-devtest type: flores200-devtest args: gla-fra metrics: - name: BLEU type: bleu value: 16.6 - name: chr-F type: chrf value: 0.44916 - task: name: Translation gla-por type: translation args: gla-por dataset: name: flores200-devtest type: flores200-devtest args: gla-por metrics: - name: BLEU type: bleu value: 12.1 - name: chr-F type: chrf value: 0.39790 - task: name: Translation gla-spa type: translation args: gla-spa dataset: name: flores200-devtest type: flores200-devtest args: gla-spa metrics: - name: BLEU type: bleu value: 12.9 - name: chr-F type: chrf value: 0.40375 - task: name: Translation gle-deu type: translation args: gle-deu dataset: name: flores200-devtest type: flores200-devtest args: gle-deu metrics: - name: BLEU type: bleu value: 19.2 - name: chr-F type: chrf value: 0.49962 - task: name: Translation gle-eng type: translation args: gle-eng dataset: name: flores200-devtest type: flores200-devtest args: gle-eng metrics: - name: BLEU type: bleu value: 38.9 - name: chr-F type: chrf value: 0.64866 - task: name: Translation gle-fra type: translation args: gle-fra dataset: name: flores200-devtest type: flores200-devtest args: gle-fra metrics: - name: BLEU type: bleu value: 26.7 - name: chr-F type: chrf value: 0.54564 - task: name: Translation gle-por type: translation args: gle-por dataset: name: flores200-devtest type: flores200-devtest args: gle-por metrics: - name: BLEU type: bleu value: 14.9 - name: chr-F type: chrf value: 0.44768 - task: name: Translation gle-spa type: translation args: gle-spa dataset: name: flores200-devtest type: flores200-devtest args: gle-spa metrics: - name: BLEU type: bleu value: 18.7 - name: chr-F type: chrf value: 0.47347 - task: name: Translation cym-deu type: translation args: cym-deu dataset: name: flores101-devtest type: flores_101 args: cym deu devtest metrics: - name: BLEU type: bleu value: 22.4 - name: chr-F type: chrf value: 0.52672 - task: name: Translation cym-fra type: translation args: cym-fra dataset: name: flores101-devtest type: flores_101 args: cym fra devtest metrics: - name: BLEU type: bleu value: 31.3 - name: chr-F type: chrf value: 0.58299 - task: name: Translation cym-por type: translation args: cym-por dataset: name: flores101-devtest type: flores_101 args: cym por devtest metrics: - name: BLEU type: bleu value: 18.4 - name: chr-F type: chrf value: 0.47733 - task: name: Translation gle-eng type: translation args: gle-eng dataset: name: flores101-devtest type: flores_101 args: gle eng devtest metrics: - name: BLEU type: bleu value: 38.6 - name: chr-F type: chrf value: 0.64773 - task: name: Translation gle-fra type: translation args: gle-fra dataset: name: flores101-devtest type: flores_101 args: gle fra devtest metrics: - name: BLEU type: bleu value: 26.5 - name: chr-F type: chrf value: 0.54559 - task: name: Translation cym-deu type: translation args: cym-deu dataset: name: ntrex128 type: ntrex128 args: cym-deu metrics: - name: BLEU type: bleu value: 16.3 - name: chr-F type: chrf value: 0.46627 - task: name: Translation cym-eng type: translation args: cym-eng dataset: name: ntrex128 type: ntrex128 args: cym-eng metrics: - name: BLEU type: bleu value: 40.0 - name: chr-F type: chrf value: 0.65343 - task: name: Translation cym-fra type: translation args: cym-fra dataset: name: ntrex128 type: ntrex128 args: cym-fra metrics: - name: BLEU type: bleu value: 23.8 - name: chr-F type: chrf value: 0.51183 - task: name: Translation cym-por type: translation args: cym-por dataset: name: ntrex128 type: ntrex128 args: cym-por metrics: - name: BLEU type: bleu value: 14.4 - name: chr-F type: chrf value: 0.42857 - task: name: Translation cym-spa type: translation args: cym-spa dataset: name: ntrex128 type: ntrex128 args: cym-spa metrics: - name: BLEU type: bleu value: 25.0 - name: chr-F type: chrf value: 0.51542 - task: name: Translation gle-deu type: translation args: gle-deu dataset: name: ntrex128 type: ntrex128 args: gle-deu metrics: - name: BLEU type: bleu value: 15.5 - name: chr-F type: chrf value: 0.46495 - task: name: Translation gle-eng type: translation args: gle-eng dataset: name: ntrex128 type: ntrex128 args: gle-eng metrics: - name: BLEU type: bleu value: 33.5 - name: chr-F type: chrf value: 0.60913 - task: name: Translation gle-fra type: translation args: gle-fra dataset: name: ntrex128 type: ntrex128 args: gle-fra metrics: - name: BLEU type: bleu value: 20.7 - name: chr-F type: chrf value: 0.49513 - task: name: Translation gle-por type: translation args: gle-por dataset: name: ntrex128 type: ntrex128 args: gle-por metrics: - name: BLEU type: bleu value: 13.2 - name: chr-F type: chrf value: 0.41767 - task: name: Translation gle-spa type: translation args: gle-spa dataset: name: ntrex128 type: ntrex128 args: gle-spa metrics: - name: BLEU type: bleu value: 23.6 - name: chr-F type: chrf value: 0.50755 - task: name: Translation bre-eng type: translation args: bre-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bre-eng metrics: - name: BLEU type: bleu value: 35.0 - name: chr-F type: chrf value: 0.53473 - task: name: Translation bre-fra type: translation args: bre-fra dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bre-fra metrics: - name: BLEU type: bleu value: 28.3 - name: chr-F type: chrf value: 0.49013 - task: name: Translation cym-eng type: translation args: cym-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: cym-eng metrics: - name: BLEU type: bleu value: 52.4 - name: chr-F type: chrf value: 0.68892 - task: name: Translation gla-eng type: translation args: gla-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: gla-eng metrics: - name: BLEU type: bleu value: 23.2 - name: chr-F type: chrf value: 0.39607 - task: name: Translation gla-spa type: translation args: gla-spa dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: gla-spa metrics: - name: BLEU type: bleu value: 26.1 - name: chr-F type: chrf value: 0.51208 - task: name: Translation gle-eng type: translation args: gle-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: gle-eng metrics: - name: BLEU type: bleu value: 50.7 - name: chr-F type: chrf value: 0.64268 - task: name: Translation multi-multi type: translation args: multi-multi dataset: name: tatoeba-test-v2020-07-28-v2023-09-26 type: tatoeba_mt args: multi-multi metrics: - name: BLEU type: bleu value: 24.9 - name: chr-F type: chrf value: 0.42670 --- # opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from Celtic languages (cel) to unknown (deu+eng+fra+por+spa). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2024-05-30 - **License:** Apache-2.0 - **Language(s):** - Source Language(s): bre cor cym gla gle glv - Target Language(s): deu eng fra por spa - Valid Target Language Labels: >>deu<< >>eng<< >>fra<< >>por<< >>spa<< >>xxx<< - **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip) - **Resources for more information:** - [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/cel-deu%2Beng%2Bfra%2Bpor%2Bspa/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30) - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/) - [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1) - [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>deu<<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>deu<< Replace this with text in an accepted source language.", ">>spa<< This is the second sentence." ] model_name = "pytorch-models/opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa") print(pipe(">>deu<< Replace this with text in an accepted source language.")) ``` ## Training - **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/cel-deu%2Beng%2Bfra%2Bpor%2Bspa/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30) * test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt) * test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bre-eng | tatoeba-test-v2021-08-07 | 0.53473 | 35.0 | 383 | 2065 | | bre-fra | tatoeba-test-v2021-08-07 | 0.49013 | 28.3 | 2494 | 13324 | | cym-eng | tatoeba-test-v2021-08-07 | 0.68892 | 52.4 | 818 | 5563 | | gla-eng | tatoeba-test-v2021-08-07 | 0.39607 | 23.2 | 955 | 6611 | | gla-spa | tatoeba-test-v2021-08-07 | 0.51208 | 26.1 | 289 | 1608 | | gle-eng | tatoeba-test-v2021-08-07 | 0.64268 | 50.7 | 1913 | 11190 | | cym-deu | flores101-devtest | 0.52672 | 22.4 | 1012 | 25094 | | cym-fra | flores101-devtest | 0.58299 | 31.3 | 1012 | 28343 | | cym-por | flores101-devtest | 0.47733 | 18.4 | 1012 | 26519 | | gle-eng | flores101-devtest | 0.64773 | 38.6 | 1012 | 24721 | | gle-fra | flores101-devtest | 0.54559 | 26.5 | 1012 | 28343 | | cym-deu | flores200-devtest | 0.52745 | 22.6 | 1012 | 25094 | | cym-eng | flores200-devtest | 0.75234 | 55.5 | 1012 | 24721 | | cym-fra | flores200-devtest | 0.58339 | 31.4 | 1012 | 28343 | | cym-por | flores200-devtest | 0.47566 | 18.3 | 1012 | 26519 | | cym-spa | flores200-devtest | 0.48834 | 19.9 | 1012 | 29199 | | gla-deu | flores200-devtest | 0.41962 | 13.0 | 1012 | 25094 | | gla-eng | flores200-devtest | 0.53374 | 26.4 | 1012 | 24721 | | gla-fra | flores200-devtest | 0.44916 | 16.6 | 1012 | 28343 | | gla-spa | flores200-devtest | 0.40375 | 12.9 | 1012 | 29199 | | gle-deu | flores200-devtest | 0.49962 | 19.2 | 1012 | 25094 | | gle-eng | flores200-devtest | 0.64866 | 38.9 | 1012 | 24721 | | gle-fra | flores200-devtest | 0.54564 | 26.7 | 1012 | 28343 | | gle-por | flores200-devtest | 0.44768 | 14.9 | 1012 | 26519 | | gle-spa | flores200-devtest | 0.47347 | 18.7 | 1012 | 29199 | | cym-deu | ntrex128 | 0.46627 | 16.3 | 1997 | 48761 | | cym-eng | ntrex128 | 0.65343 | 40.0 | 1997 | 47673 | | cym-fra | ntrex128 | 0.51183 | 23.8 | 1997 | 53481 | | cym-por | ntrex128 | 0.42857 | 14.4 | 1997 | 51631 | | cym-spa | ntrex128 | 0.51542 | 25.0 | 1997 | 54107 | | gle-deu | ntrex128 | 0.46495 | 15.5 | 1997 | 48761 | | gle-eng | ntrex128 | 0.60913 | 33.5 | 1997 | 47673 | | gle-fra | ntrex128 | 0.49513 | 20.7 | 1997 | 53481 | | gle-por | ntrex128 | 0.41767 | 13.2 | 1997 | 51631 | | gle-spa | ntrex128 | 0.50755 | 23.6 | 1997 | 54107 | ## Citation Information * Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ```bibtex @article{tiedemann2023democratizing, title={Democratizing neural machine translation with {OPUS-MT}}, author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami}, journal={Language Resources and Evaluation}, number={58}, pages={713--755}, year={2023}, publisher={Springer Nature}, issn={1574-0218}, doi={10.1007/s10579-023-09704-w} } @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/). ## Model conversion info * transformers version: 4.45.1 * OPUS-MT git hash: a0ea3b3 * port time: Mon Oct 7 23:09:42 EEST 2024 * port machine: LM0-400-22516.local