tiedeman commited on
Commit
3c3fd7d
1 Parent(s): f8a51f7

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - chm
5
+ - de
6
+ - en
7
+ - es
8
+ - et
9
+ - fi
10
+ - fkv
11
+ - fr
12
+ - hu
13
+ - izh
14
+ - krl
15
+ - kv
16
+ - liv
17
+ - mdf
18
+ - mrj
19
+ - myv
20
+ - pt
21
+ - se
22
+ - sma
23
+ - smn
24
+ - udm
25
+ - vep
26
+ - vot
27
+
28
+ tags:
29
+ - translation
30
+ - opus-mt-tc-bible
31
+
32
+ license: apache-2.0
33
+ model-index:
34
+ - name: opus-mt-tc-bible-big-deu_eng_fra_por_spa-urj
35
+ results:
36
+ - task:
37
+ name: Translation multi-multi
38
+ type: translation
39
+ args: multi-multi
40
+ dataset:
41
+ name: tatoeba-test-v2020-07-28-v2023-09-26
42
+ type: tatoeba_mt
43
+ args: multi-multi
44
+ metrics:
45
+ - name: BLEU
46
+ type: bleu
47
+ value: 37.1
48
+ - name: chr-F
49
+ type: chrf
50
+ value: 0.61730
51
+ ---
52
+ # opus-mt-tc-bible-big-deu_eng_fra_por_spa-urj
53
+
54
+ ## Table of Contents
55
+ - [Model Details](#model-details)
56
+ - [Uses](#uses)
57
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
58
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
59
+ - [Training](#training)
60
+ - [Evaluation](#evaluation)
61
+ - [Citation Information](#citation-information)
62
+ - [Acknowledgements](#acknowledgements)
63
+
64
+ ## Model Details
65
+
66
+ Neural machine translation model for translating from unknown (deu+eng+fra+por+spa) to Uralic languages (urj).
67
+
68
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
69
+ **Model Description:**
70
+ - **Developed by:** Language Technology Research Group at the University of Helsinki
71
+ - **Model Type:** Translation (transformer-big)
72
+ - **Release**: 2024-05-30
73
+ - **License:** Apache-2.0
74
+ - **Language(s):**
75
+ - Source Language(s): deu eng fra por spa
76
+ - Target Language(s): chm est fin fkv hun izh koi kom kpv krl liv mdf mrj myv sma sme smn udm vep vot vro
77
+ - Valid Target Language Labels: >>chm<< >>enf<< >>enh<< >>est<< >>fin<< >>fit<< >>fkv<< >>fkv_Latn<< >>hun<< >>izh<< >>kca<< >>koi<< >>kom<< >>kpv<< >>krl<< >>liv<< >>liv_Latn<< >>lud<< >>mdf<< >>mns<< >>mrj<< >>mtm<< >>myv<< >>nio<< >>olo<< >>sel<< >>sia<< >>sjd<< >>sje<< >>sjk<< >>sjt<< >>sju<< >>sma<< >>sme<< >>smj<< >>smn<< >>sms<< >>udm<< >>vep<< >>vot<< >>vot_Latn<< >>vro<< >>xas<< >>yrk<<
78
+ - **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-urj/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
79
+ - **Resources for more information:**
80
+ - [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-urj/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
81
+ - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
82
+ - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
83
+ - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
84
+ - [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
85
+ - [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
86
+
87
+ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>chm<<`
88
+
89
+ ## Uses
90
+
91
+ This model can be used for translation and text-to-text generation.
92
+
93
+ ## Risks, Limitations and Biases
94
+
95
+ **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
96
+
97
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
98
+
99
+ ## How to Get Started With the Model
100
+
101
+ A short example code:
102
+
103
+ ```python
104
+ from transformers import MarianMTModel, MarianTokenizer
105
+
106
+ src_text = [
107
+ ">>chm<< Replace this with text in an accepted source language.",
108
+ ">>vro<< This is the second sentence."
109
+ ]
110
+
111
+ model_name = "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-urj"
112
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
113
+ model = MarianMTModel.from_pretrained(model_name)
114
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
115
+
116
+ for t in translated:
117
+ print( tokenizer.decode(t, skip_special_tokens=True) )
118
+ ```
119
+
120
+ You can also use OPUS-MT models with the transformers pipelines, for example:
121
+
122
+ ```python
123
+ from transformers import pipeline
124
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-urj")
125
+ print(pipe(">>chm<< Replace this with text in an accepted source language."))
126
+ ```
127
+
128
+ ## Training
129
+
130
+ - **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
131
+ - **Pre-processing**: SentencePiece (spm32k,spm32k)
132
+ - **Model Type:** transformer-big
133
+ - **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-urj/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
134
+ - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
135
+
136
+ ## Evaluation
137
+
138
+ * [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-urj/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
139
+ * test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-urj/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt)
140
+ * test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-urj/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt)
141
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
142
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
143
+
144
+ | langpair | testset | chr-F | BLEU | #sent | #words |
145
+ |----------|---------|-------|-------|-------|--------|
146
+ | multi-multi | tatoeba-test-v2020-07-28-v2023-09-26 | 0.61730 | 37.1 | 10000 | 64457 |
147
+
148
+ ## Citation Information
149
+
150
+ * Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
151
+
152
+ ```bibtex
153
+ @article{tiedemann2023democratizing,
154
+ title={Democratizing neural machine translation with {OPUS-MT}},
155
+ author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
156
+ journal={Language Resources and Evaluation},
157
+ number={58},
158
+ pages={713--755},
159
+ year={2023},
160
+ publisher={Springer Nature},
161
+ issn={1574-0218},
162
+ doi={10.1007/s10579-023-09704-w}
163
+ }
164
+
165
+ @inproceedings{tiedemann-thottingal-2020-opus,
166
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
167
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
168
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
169
+ month = nov,
170
+ year = "2020",
171
+ address = "Lisboa, Portugal",
172
+ publisher = "European Association for Machine Translation",
173
+ url = "https://aclanthology.org/2020.eamt-1.61",
174
+ pages = "479--480",
175
+ }
176
+
177
+ @inproceedings{tiedemann-2020-tatoeba,
178
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
179
+ author = {Tiedemann, J{\"o}rg},
180
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
181
+ month = nov,
182
+ year = "2020",
183
+ address = "Online",
184
+ publisher = "Association for Computational Linguistics",
185
+ url = "https://aclanthology.org/2020.wmt-1.139",
186
+ pages = "1174--1182",
187
+ }
188
+ ```
189
+
190
+ ## Acknowledgements
191
+
192
+ The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
193
+
194
+ ## Model conversion info
195
+
196
+ * transformers version: 4.45.1
197
+ * OPUS-MT git hash: 0882077
198
+ * port time: Tue Oct 8 10:42:04 EEST 2024
199
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ multi-multi tatoeba-test-v2020-07-28-v2023-09-26 0.61730 37.1 10000 64457
benchmark_translations.zip ADDED
File without changes
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-urj",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "MarianMTModel"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 0,
10
+ "classifier_dropout": 0.0,
11
+ "d_model": 1024,
12
+ "decoder_attention_heads": 16,
13
+ "decoder_ffn_dim": 4096,
14
+ "decoder_layerdrop": 0.0,
15
+ "decoder_layers": 6,
16
+ "decoder_start_token_id": 59383,
17
+ "decoder_vocab_size": 59384,
18
+ "dropout": 0.1,
19
+ "encoder_attention_heads": 16,
20
+ "encoder_ffn_dim": 4096,
21
+ "encoder_layerdrop": 0.0,
22
+ "encoder_layers": 6,
23
+ "eos_token_id": 614,
24
+ "forced_eos_token_id": null,
25
+ "init_std": 0.02,
26
+ "is_encoder_decoder": true,
27
+ "max_length": null,
28
+ "max_position_embeddings": 1024,
29
+ "model_type": "marian",
30
+ "normalize_embedding": false,
31
+ "num_beams": null,
32
+ "num_hidden_layers": 6,
33
+ "pad_token_id": 59383,
34
+ "scale_embedding": true,
35
+ "share_encoder_decoder_embeddings": true,
36
+ "static_position_embeddings": true,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.45.1",
39
+ "use_cache": true,
40
+ "vocab_size": 59384
41
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 59383
6
+ ]
7
+ ],
8
+ "bos_token_id": 0,
9
+ "decoder_start_token_id": 59383,
10
+ "eos_token_id": 614,
11
+ "forced_eos_token_id": 614,
12
+ "max_length": 512,
13
+ "num_beams": 4,
14
+ "pad_token_id": 59383,
15
+ "transformers_version": "4.45.1"
16
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:506d9f268c3d49aa1369aca021e3876f4cad6ec8b2c79ac1d8ace5ae4cf16488
3
+ size 948933520
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b252117a69bfed9064ba83e450ff9b3f2c3d7f535c2ba44fe73f161890747e6
3
+ size 948984773
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:900e0c65b7faf46cd08dbc723d3a0b7214075d7a5f04a20a9eadbf4d112ceea7
3
+ size 811251
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36698d7e29e0a3dd2fa01bce3f49402eda7fffb62a5cdd4f1c60d857d2a95dd5
3
+ size 821630
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "deu+eng+fra+por+spa", "target_lang": "urj", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30/deu+eng+fra+por+spa-urj", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff