tiedeman commited on
Commit
faaece3
1 Parent(s): eb9caba

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - acf
5
+ - an
6
+ - ast
7
+ - ca
8
+ - cbk
9
+ - co
10
+ - crs
11
+ - de
12
+ - egl
13
+ - en
14
+ - es
15
+ - ext
16
+ - fr
17
+ - frm
18
+ - frp
19
+ - fur
20
+ - gcf
21
+ - gl
22
+ - ht
23
+ - it
24
+ - kea
25
+ - la
26
+ - lad
27
+ - lij
28
+ - lld
29
+ - lmo
30
+ - lou
31
+ - mfe
32
+ - mo
33
+ - mwl
34
+ - nap
35
+ - nl
36
+ - oc
37
+ - osp
38
+ - pap
39
+ - pms
40
+ - pt
41
+ - rm
42
+ - ro
43
+ - rup
44
+ - sc
45
+ - scn
46
+ - vec
47
+ - wa
48
+
49
+ tags:
50
+ - translation
51
+ - opus-mt-tc-bible
52
+
53
+ license: apache-2.0
54
+ model-index:
55
+ - name: opus-mt-tc-bible-big-itc-deu_eng_nld
56
+ results:
57
+ - task:
58
+ name: Translation multi-multi
59
+ type: translation
60
+ args: multi-multi
61
+ dataset:
62
+ name: tatoeba-test-v2020-07-28-v2023-09-26
63
+ type: tatoeba_mt
64
+ args: multi-multi
65
+ metrics:
66
+ - name: BLEU
67
+ type: bleu
68
+ value: 55.2
69
+ - name: chr-F
70
+ type: chrf
71
+ value: 0.70865
72
+ ---
73
+ # opus-mt-tc-bible-big-itc-deu_eng_nld
74
+
75
+ ## Table of Contents
76
+ - [Model Details](#model-details)
77
+ - [Uses](#uses)
78
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
79
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
80
+ - [Training](#training)
81
+ - [Evaluation](#evaluation)
82
+ - [Citation Information](#citation-information)
83
+ - [Acknowledgements](#acknowledgements)
84
+
85
+ ## Model Details
86
+
87
+ Neural machine translation model for translating from Italic languages (itc) to unknown (deu+eng+nld).
88
+
89
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
90
+ **Model Description:**
91
+ - **Developed by:** Language Technology Research Group at the University of Helsinki
92
+ - **Model Type:** Translation (transformer-big)
93
+ - **Release**: 2024-08-18
94
+ - **License:** Apache-2.0
95
+ - **Language(s):**
96
+ - Source Language(s): acf arg ast cat cbk cos crs egl ext fra frm frp fur gcf glg hat ita kea lad lat lij lld lmo lou mfe mol mwl nap oci osp pap pms por roh ron rup scn spa srd vec wln
97
+ - Target Language(s): deu eng nld
98
+ - Valid Target Language Labels: >>deu<< >>eng<< >>nld<< >>xxx<<
99
+ - **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip)
100
+ - **Resources for more information:**
101
+ - [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/itc-deu%2Beng%2Bnld/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-18)
102
+ - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
103
+ - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
104
+ - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
105
+ - [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
106
+ - [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
107
+
108
+ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>deu<<`
109
+
110
+ ## Uses
111
+
112
+ This model can be used for translation and text-to-text generation.
113
+
114
+ ## Risks, Limitations and Biases
115
+
116
+ **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
117
+
118
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
119
+
120
+ ## How to Get Started With the Model
121
+
122
+ A short example code:
123
+
124
+ ```python
125
+ from transformers import MarianMTModel, MarianTokenizer
126
+
127
+ src_text = [
128
+ ">>eng<< Le destin nous a séparés.",
129
+ ">>deu<< Le coréen est facile."
130
+ ]
131
+
132
+ model_name = "pytorch-models/opus-mt-tc-bible-big-itc-deu_eng_nld"
133
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
134
+ model = MarianMTModel.from_pretrained(model_name)
135
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
136
+
137
+ for t in translated:
138
+ print( tokenizer.decode(t, skip_special_tokens=True) )
139
+
140
+ # expected output:
141
+ # Fate has separated us.
142
+ # Koreanisch ist einfach.
143
+ ```
144
+
145
+ You can also use OPUS-MT models with the transformers pipelines, for example:
146
+
147
+ ```python
148
+ from transformers import pipeline
149
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-itc-deu_eng_nld")
150
+ print(pipe(">>eng<< Le destin nous a séparés."))
151
+
152
+ # expected output: Fate has separated us.
153
+ ```
154
+
155
+ ## Training
156
+
157
+ - **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
158
+ - **Pre-processing**: SentencePiece (spm32k,spm32k)
159
+ - **Model Type:** transformer-big
160
+ - **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.zip)
161
+ - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
162
+
163
+ ## Evaluation
164
+
165
+ * [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/itc-deu%2Beng%2Bnld/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-18)
166
+ * test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.test.txt)
167
+ * test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18.eval.txt)
168
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
169
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
170
+
171
+ | langpair | testset | chr-F | BLEU | #sent | #words |
172
+ |----------|---------|-------|-------|-------|--------|
173
+ | multi-multi | tatoeba-test-v2020-07-28-v2023-09-26 | 0.70865 | 55.2 | 10000 | 84477 |
174
+
175
+ ## Citation Information
176
+
177
+ * Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
178
+
179
+ ```bibtex
180
+ @article{tiedemann2023democratizing,
181
+ title={Democratizing neural machine translation with {OPUS-MT}},
182
+ author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
183
+ journal={Language Resources and Evaluation},
184
+ number={58},
185
+ pages={713--755},
186
+ year={2023},
187
+ publisher={Springer Nature},
188
+ issn={1574-0218},
189
+ doi={10.1007/s10579-023-09704-w}
190
+ }
191
+
192
+ @inproceedings{tiedemann-thottingal-2020-opus,
193
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
194
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
195
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
196
+ month = nov,
197
+ year = "2020",
198
+ address = "Lisboa, Portugal",
199
+ publisher = "European Association for Machine Translation",
200
+ url = "https://aclanthology.org/2020.eamt-1.61",
201
+ pages = "479--480",
202
+ }
203
+
204
+ @inproceedings{tiedemann-2020-tatoeba,
205
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
206
+ author = {Tiedemann, J{\"o}rg},
207
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
208
+ month = nov,
209
+ year = "2020",
210
+ address = "Online",
211
+ publisher = "Association for Computational Linguistics",
212
+ url = "https://aclanthology.org/2020.wmt-1.139",
213
+ pages = "1174--1182",
214
+ }
215
+ ```
216
+
217
+ ## Acknowledgements
218
+
219
+ The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
220
+
221
+ ## Model conversion info
222
+
223
+ * transformers version: 4.45.1
224
+ * OPUS-MT git hash: 0882077
225
+ * port time: Tue Oct 8 12:00:26 EEST 2024
226
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ multi-multi tatoeba-test-v2020-07-28-v2023-09-26 0.70865 55.2 10000 84477
benchmark_translations.zip ADDED
File without changes
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pytorch-models/opus-mt-tc-bible-big-itc-deu_eng_nld",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "MarianMTModel"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 0,
10
+ "classifier_dropout": 0.0,
11
+ "d_model": 1024,
12
+ "decoder_attention_heads": 16,
13
+ "decoder_ffn_dim": 4096,
14
+ "decoder_layerdrop": 0.0,
15
+ "decoder_layers": 6,
16
+ "decoder_start_token_id": 56277,
17
+ "decoder_vocab_size": 56278,
18
+ "dropout": 0.1,
19
+ "encoder_attention_heads": 16,
20
+ "encoder_ffn_dim": 4096,
21
+ "encoder_layerdrop": 0.0,
22
+ "encoder_layers": 6,
23
+ "eos_token_id": 538,
24
+ "forced_eos_token_id": null,
25
+ "init_std": 0.02,
26
+ "is_encoder_decoder": true,
27
+ "max_length": null,
28
+ "max_position_embeddings": 1024,
29
+ "model_type": "marian",
30
+ "normalize_embedding": false,
31
+ "num_beams": null,
32
+ "num_hidden_layers": 6,
33
+ "pad_token_id": 56277,
34
+ "scale_embedding": true,
35
+ "share_encoder_decoder_embeddings": true,
36
+ "static_position_embeddings": true,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.45.1",
39
+ "use_cache": true,
40
+ "vocab_size": 56278
41
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 56277
6
+ ]
7
+ ],
8
+ "bos_token_id": 0,
9
+ "decoder_start_token_id": 56277,
10
+ "eos_token_id": 538,
11
+ "forced_eos_token_id": 538,
12
+ "max_length": 512,
13
+ "num_beams": 4,
14
+ "pad_token_id": 56277,
15
+ "transformers_version": "4.45.1"
16
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:042f6188f7a6f97d71b580373ae8e76f99450cd27c024b95877bbf5e0a6508c2
3
+ size 936198920
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cea0e616b91b9e8b48a943966bedd4b36a6651e8022da4323f4888c34059634
3
+ size 936250181
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4af30cd18b1b4ffd015008c78ed7d0e55b4a60dbaf5c1355662410501aa7eda
3
+ size 808898
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f0749df9e50bbe89d4c64cc08ea458725f308483d8099ba40da05a9de3c166a
3
+ size 805862
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "itc", "target_lang": "deu+eng+nld", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-18/itc-deu+eng+nld", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff