File size: 11,008 Bytes
6457ac4 662b1b1 6457ac4 662b1b1 6457ac4 662b1b1 6457ac4 662b1b1 6457ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
---
language:
- cs
- da
- nb
- pl
- sv
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-gmq-zlw
results:
- task:
name: Translation dan-ces
type: translation
args: dan-ces
dataset:
name: flores101-devtest
type: flores_101
args: dan ces devtest
metrics:
- name: BLEU
type: bleu
value: 26.7
- name: chr-F
type: chrf
value: 0.54065
- task:
name: Translation dan-pol
type: translation
args: dan-pol
dataset:
name: flores101-devtest
type: flores_101
args: dan pol devtest
metrics:
- name: BLEU
type: bleu
value: 18.8
- name: chr-F
type: chrf
value: 0.48389
- task:
name: Translation isl-ces
type: translation
args: isl-ces
dataset:
name: flores101-devtest
type: flores_101
args: isl ces devtest
metrics:
- name: BLEU
type: bleu
value: 17.7
- name: chr-F
type: chrf
value: 0.43582
- task:
name: Translation isl-pol
type: translation
args: isl-pol
dataset:
name: flores101-devtest
type: flores_101
args: isl pol devtest
metrics:
- name: BLEU
type: bleu
value: 13.9
- name: chr-F
type: chrf
value: 0.41929
- task:
name: Translation nob-ces
type: translation
args: nob-ces
dataset:
name: flores101-devtest
type: flores_101
args: nob ces devtest
metrics:
- name: BLEU
type: bleu
value: 22.3
- name: chr-F
type: chrf
value: 0.50336
- task:
name: Translation nob-pol
type: translation
args: nob-pol
dataset:
name: flores101-devtest
type: flores_101
args: nob pol devtest
metrics:
- name: BLEU
type: bleu
value: 16.3
- name: chr-F
type: chrf
value: 0.46130
- task:
name: Translation swe-ces
type: translation
args: swe-ces
dataset:
name: flores101-devtest
type: flores_101
args: swe ces devtest
metrics:
- name: BLEU
type: bleu
value: 25.7
- name: chr-F
type: chrf
value: 0.53188
- task:
name: Translation swe-pol
type: translation
args: swe-pol
dataset:
name: flores101-devtest
type: flores_101
args: swe pol devtest
metrics:
- name: BLEU
type: bleu
value: 18.6
- name: chr-F
type: chrf
value: 0.48163
- task:
name: Translation swe-pol
type: translation
args: swe-pol
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: swe-pol
metrics:
- name: BLEU
type: bleu
value: 46.2
- name: chr-F
type: chrf
value: 0.66326
---
# opus-mt-tc-big-gmq-zlw
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)
## Model Details
Neural machine translation model for translating from North Germanic languages (gmq) to West Slavic languages (zlw).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2022-08-03
- **License:** CC-BY-4.0
- **Language(s):**
- Source Language(s): dan nob nor swe
- Target Language(s): ces pol
- Language Pair(s): dan-ces nob-ces swe-ces swe-pol
- Valid Target Language Labels: >>ces<< >>csb<< >>czk<< >>dsb<< >>hsb<< >>pol<< >>pox<< >>slk<< >>szl<<
- **Original Model**: [opusTCv20210807_transformer-big_2022-08-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zlw/opusTCv20210807_transformer-big_2022-08-03.zip)
- **Resources for more information:**
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
- More information about released models for this language pair: [OPUS-MT gmq-zlw README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-zlw/README.md)
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>ces<<`
## Uses
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## How to Get Started With the Model
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>ces<< Normalt er jeg hjemme hele weekenden.",
">>pol<< Lev ditt liv."
]
model_name = "pytorch-models/opus-mt-tc-big-gmq-zlw"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Většinou jsem doma celý víkend.
# Żyj swoim życiem.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-zlw")
print(pipe(">>ces<< Normalt er jeg hjemme hele weekenden."))
# expected output: Většinou jsem doma celý víkend.
```
## Training
- **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:** transformer-big
- **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-08-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zlw/opusTCv20210807_transformer-big_2022-08-03.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Evaluation
* test set translations: [opusTCv20210807_transformer-big_2022-08-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zlw/opusTCv20210807_transformer-big_2022-08-03.test.txt)
* test set scores: [opusTCv20210807_transformer-big_2022-08-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zlw/opusTCv20210807_transformer-big_2022-08-03.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| swe-pol | tatoeba-test-v2021-08-07 | 0.66326 | 46.2 | 1392 | 8157 |
| dan-ces | flores101-devtest | 0.54065 | 26.7 | 1012 | 22101 |
| dan-pol | flores101-devtest | 0.48389 | 18.8 | 1012 | 22520 |
| isl-ces | flores101-devtest | 0.43582 | 17.7 | 1012 | 22101 |
| isl-pol | flores101-devtest | 0.41929 | 13.9 | 1012 | 22520 |
| nob-ces | flores101-devtest | 0.50336 | 22.3 | 1012 | 22101 |
| nob-pol | flores101-devtest | 0.46130 | 16.3 | 1012 | 22520 |
| swe-ces | flores101-devtest | 0.53188 | 25.7 | 1012 | 22101 |
| swe-pol | flores101-devtest | 0.48163 | 18.6 | 1012 | 22520 |
## Citation Information
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 8b9f0b0
* port time: Sat Aug 13 00:02:29 EEST 2022
* port machine: LM0-400-22516.local
|