File size: 9,958 Bytes
f8aec42
 
 
 
 
 
 
 
 
9b4e420
f8aec42
 
 
 
 
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
9b4e420
 
 
f8aec42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342e089
f8aec42
 
342e089
f8aec42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342e089
 
f8aec42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
---
language:
- be
- en
- ru
- uk
- zle
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-zle-en
  results:
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: flores101-devtest
      type: flores_101
      args: rus eng devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 35.2
  - task:
      name: Translation ukr-eng
      type: translation
      args: ukr-eng
    dataset:
      name: flores101-devtest
      type: flores_101
      args: ukr eng devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 39.2
  - task:
      name: Translation bel-eng
      type: translation
      args: bel-eng
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: bel-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 48.1
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 57.4
  - task:
      name: Translation ukr-eng
      type: translation
      args: ukr-eng
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: ukr-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 56.9
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: tico19-test
      type: tico19-test
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 33.3
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: newstest2012
      type: wmt-2012-news
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 39.2
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: newstest2013
      type: wmt-2013-news
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 31.3
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: newstest2014
      type: wmt-2014-news
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 40.5
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: newstest2015
      type: wmt-2015-news
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 36.1
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: newstest2016
      type: wmt-2016-news
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 35.7
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: newstest2017
      type: wmt-2017-news
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 40.8
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: newstest2018
      type: wmt-2018-news
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 35.2
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: newstest2019
      type: wmt-2019-news
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 41.6
  - task:
      name: Translation rus-eng
      type: translation
      args: rus-eng
    dataset:
      name: newstest2020
      type: wmt-2020-news
      args: rus-eng
    metrics:
    - name: BLEU
      type: bleu
      value: 36.9
---
# opus-mt-tc-big-zle-en

Neural machine translation model for translating from East Slavic languages (zle) to English (en).

This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).

* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)

```
@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}
```

## Model info

* Release: 2022-03-17
* source language(s): bel rus ukr
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opusTCv20210807+bt_transformer-big_2022-03-17.zip)
* more information released models: [OPUS-MT zle-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-eng/README.md)

## Usage

A short example code:

```python
from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Скільки мені слід купити пива?",
    "Я клієнтка."
]

model_name = "pytorch-models/opus-mt-tc-big-zle-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     How much beer should I buy?
#     I'm a client.
```

You can also use OPUS-MT models with the transformers pipelines, for example:

```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-en")
print(pipe("Скільки мені слід купити пива?"))

# expected output: How much beer should I buy?
```

## Benchmarks

* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opusTCv20210807+bt_transformer-big_2022-03-17.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)

| langpair | testset | chr-F | BLEU  | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| bel-eng | tatoeba-test-v2021-08-07 | 0.65221 | 48.1 | 2500 | 18571 |
| rus-eng | tatoeba-test-v2021-08-07 | 0.71452 | 57.4 | 19425 | 147872 |
| ukr-eng | tatoeba-test-v2021-08-07 | 0.71162 | 56.9 | 13127 | 88607 |
| bel-eng | flores101-devtest | 0.51689 | 18.1 | 1012 | 24721 |
| rus-eng | flores101-devtest | 0.62581 | 35.2 | 1012 | 24721 |
| ukr-eng | flores101-devtest | 0.65001 | 39.2 | 1012 | 24721 |
| rus-eng | newstest2012 | 0.63724 | 39.2 | 3003 | 72812 |
| rus-eng | newstest2013 | 0.57641 | 31.3 | 3000 | 64505 |
| rus-eng | newstest2014 | 0.65667 | 40.5 | 3003 | 69190 |
| rus-eng | newstest2015 | 0.61747 | 36.1 | 2818 | 64428 |
| rus-eng | newstest2016 | 0.61414 | 35.7 | 2998 | 69278 |
| rus-eng | newstest2017 | 0.65365 | 40.8 | 3001 | 69025 |
| rus-eng | newstest2018 | 0.61386 | 35.2 | 3000 | 71291 |
| rus-eng | newstest2019 | 0.65476 | 41.6 | 2000 | 42642 |
| rus-eng | newstest2020 | 0.64878 | 36.9 | 991 | 20217 |
| rus-eng | newstestB2020 | 0.65685 | 39.3 | 991 | 20423 |
| rus-eng | tico19-test | 0.63280 | 33.3 | 2100 | 56323 |

## Acknowledgements

The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.

## Model conversion info

* transformers version: 4.16.2
* OPUS-MT git hash: 1bdabf7
* port time: Wed Mar 23 22:17:11 EET 2022
* port machine: LM0-400-22516.local