---
library_name: transformers
license: apache-2.0
base_model: Heralax/army-pretrain-1
tags:
- generated_from_trainer
model-index:
- name: us-army-finetune-1
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: Heralax/army-pretrain-1
tokenizer_type: AutoTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: json
data_files: us_army_plain_qa_list_open.jsonl
ds_type: json
type: sharegpt
conversation: chatml
- path: json
data_files: us_army_plain_qa_list_vanilla.jsonl
ds_type: json
type: sharegpt
conversation: chatml
- path: json
data_files: us_army_plain_qa_list_negative.jsonl
ds_type: json
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
output_dir: ./us-army-finetune-1
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
shuffle_merged_datasets: true
wandb_project: mistral-usarmy
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 6
micro_batch_size: 2
eval_batch_size: 1
num_epochs: 6
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000020
weight_decay: 0
# Gradient clipping max norm
max_grad_norm: 1.0
noisy_embedding_alpha: 0
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
chat_template: chatml
warmup_ratio: 0.5
auto_resume_from_checkpoints: false
#warmup_ratio: 0.5
eval_steps: 10
saves_per_epoch: 1
eval_sample_packing: false
save_total_limit: 3
debug:
deepspeed: deepspeed_configs/zero2.json
special_tokens:
pad_token: "<|end_of_text|>"
```
# us-army-finetune-1
This model is a fine-tuned version of [Heralax/army-pretrain-1](https://huggingface.co/Heralax/army-pretrain-1) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 5
- gradient_accumulation_steps: 6
- total_train_batch_size: 60
- total_eval_batch_size: 5
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 48
- num_epochs: 6
### Training results
### Framework versions
- Transformers 4.45.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0