--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B tags: - generated_from_trainer model-index: - name: paulgraham-finetune-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml # Experiment goal: are the representations diverse enough with just annotation on a variety of input texts? base_model: meta-llama/Meta-Llama-3-8B # Heralax/bittensor-mistral-pretrained-base-1 #mistralai/Mistral-7B-v0.1 # Heralax/bittensor-mistral-pretrained-base-1 #mistralai/Mistral-7B-v0.1 model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer is_mistral_derived_model: false load_in_8bit: false load_in_4bit: false strict: false datasets: - path: json data_files: ./essays_annotation_syspromptvaried.jsonl ds_type: json type: sharegpt conversation: chatml - path: json data_files: ./tweets_annotation_syspromptvaried.jsonl ds_type: json type: sharegpt conversation: chatml - path: json data_files: ./autometa_4_percent.json ds_type: json type: sharegpt conversation: chatml # - path: json # data_files: paul_graham_essays_completion.json # ds_type: json # type: completion dataset_prepared_path: last_run_prepared output_dir: ./paulgraham-finetune-out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true shuffle_merged_datasets: true wandb_project: pg-test wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 6 micro_batch_size: 2 eval_batch_size: 1 num_epochs: 7 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.000024 weight_decay: 0 # Gradient clipping max norm max_grad_norm: 1.0 noisy_embedding_alpha: 0 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true # fsdp: # - full_shard # - auto_wrap # fsdp_config: # fsdp_offload_params: false # fsdp_state_dict_type: FULL_STATE_DICT # fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer # warmup_steps: 10 warmup_ratio: 0.5 auto_resume_from_checkpoints: false #warmup_ratio: 0.5 eval_steps: 10 saves_per_epoch: 1 eval_sample_packing: false save_total_limit: 2 debug: deepspeed: deepspeed_configs/zero2.json chat_template: chatml special_tokens: bos_token: "" eos_token: "" unk_token: "" pad_token: "" ```

[Visualize in Weights & Biases](https://wandb.ai/evanpeterarmstrong/pg-test/runs/8mle55z2) # paulgraham-finetune-out This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.4e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 6 - total_train_batch_size: 72 - total_eval_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 31 - num_epochs: 7 ### Training results ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1