File size: 6,399 Bytes
c2301e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import shutil
import subprocess
from mega import Mega
import gradio as gr

def download_from_url(url, model):
    try:
        model = model.replace('.pth', '').replace('.index', '').replace('.zip', '')
        url = url.replace('/blob/main/', '/resolve/main/').strip()

        for directory in ["downloads", "unzips", "zip"]:
            os.makedirs(directory, exist_ok=True)

        if url.endswith('.pth'):
            subprocess.run(["wget", url, "-O", f'assets/weights/{model}.pth'])
        elif url.endswith('.index'):
            os.makedirs(f'logs/{model}', exist_ok=True)
            subprocess.run(["wget", url, "-O", f'logs/{model}/added_{model}.index'])
        elif url.endswith('.zip'):
            subprocess.run(["wget", url, "-O", f'downloads/{model}.zip'])
        else:
            if "drive.google.com" in url:
                url = url.split('/')[0]
                subprocess.run(["gdown", url, "--fuzzy", "-O", f'downloads/{model}'])
            elif "mega.nz" in url:
                Mega().download_url(url, 'downloads')
            else:
                subprocess.run(["wget", url, "-O", f'downloads/{model}'])

        downloaded_file = next((f for f in os.listdir("downloads")), None)
        if downloaded_file:
            if downloaded_file.endswith(".zip"):
                shutil.unpack_archive(f'downloads/{downloaded_file}', "unzips", 'zip')
                for root, _, files in os.walk('unzips'):
                    for file in files:
                        file_path = os.path.join(root, file)
                        if file.endswith(".index"):
                            os.makedirs(f'logs/{model}', exist_ok=True)
                            shutil.copy2(file_path, f'logs/{model}')
                        elif file.endswith(".pth") and "G_" not in file and "D_" not in file:
                            shutil.copy(file_path, f'assets/weights/{model}.pth')
            elif downloaded_file.endswith(".pth"):
                shutil.copy(f'downloads/{downloaded_file}', f'assets/weights/{model}.pth')
            elif downloaded_file.endswith(".index"):
                os.makedirs(f'logs/{model}', exist_ok=True)
                shutil.copy(f'downloads/{downloaded_file}', f'logs/{model}/added_{model}.index')
            else:
                return "Failed to download file"
        return f"Successfully downloaded {model} voice models"
    except Exception as e:
        return f"Error: {str(e)}"
    finally:
        shutil.rmtree("downloads", ignore_errors=True)
        shutil.rmtree("unzips", ignore_errors=True)
        shutil.rmtree("zip", ignore_errors=True)

def listen_to_model(model_path, index_path, pitch, input_path, f0_method, save_as, index_rate, volume_normalization, consonant_protection):
    if not os.path.exists(model_path):
        return "Model path not found"
    if not os.path.exists(index_path):
        return f"{index_path} was not found"
    if not os.path.exists(input_path):
        return f"{input_path} was not found"
    
    os.environ['index_root'] = os.path.dirname(index_path)
    index_path = os.path.basename(index_path)
    model_name = os.path.basename(model_path)
    os.environ['weight_root'] = os.path.dirname(model_path)

    try:
        command = [
            "python", "tools/infer_cli.py",
            "--f0up_key", str(pitch),
            "--input_path", input_path,
            "--index_path", index_path,
            "--f0method", f0_method,
            "--opt_path", save_as,
            "--model_name", model_name,
            "--index_rate", str(index_rate),
            "--device", "cuda:0",
            "--is_half", "True",
            "--filter_radius", "3",
            "--resample_sr", "0",
            "--rms_mix_rate", str(volume_normalization),
            "--protect", str(consonant_protection)
        ]
        subprocess.run(command, check=True)
        return save_as
    except subprocess.CalledProcessError as e:
        return f"Error: {str(e)}"

with gr.Blocks() as demo:
    gr.Markdown("# RVC V2 Web UI")

    with gr.Tabs():
        with gr.TabItem("Download Model"):
            gr.Markdown("### Download RVC Model")
            url_input = gr.Textbox(label="Model URL", placeholder="Enter the model URL here")
            model_input = gr.Textbox(label="Model Name", placeholder="Enter the model name here")
            download_button = gr.Button("Download")
            download_output = gr.Textbox(label="Download Status")
            download_button.click(download_from_url, inputs=[url_input, model_input], outputs=download_output)

        with gr.TabItem("Listen to Model"):
            gr.Markdown("### Listen to Your Model")
            model_path_input = gr.Textbox(label="Model Path", value="/content/RVC/assets/weights/Sonic.pth")
            index_path_input = gr.Textbox(label="Index Path", value="/content/RVC/logs/Sonic/added_IVF905_Flat_nprobe_1_Sonic_v2.index")
            input_path_input = gr.Textbox(label="Input Audio Path", value="/content/RVC/audios/astronauts.mp3")
            save_as_input = gr.Textbox(label="Save Output As", value="/content/RVC/audios/cli_output.wav")
            f0_method_input = gr.Radio(label="F0 Method", choices=["rmvpe", "pm", "harvest"], value="rmvpe")

            with gr.Row():
                pitch_input = gr.Slider(label="Pitch", minimum=-12, maximum=12, step=1, value=0)
                index_rate_input = gr.Slider(label="Index Rate", minimum=0, maximum=1, step=0.01, value=0.5)
                volume_normalization_input = gr.Slider(label="Volume Normalization", minimum=0, maximum=1, step=0.01, value=0)
                consonant_protection_input = gr.Slider(label="Consonant Protection", minimum=0, maximum=1, step=0.01, value=0.5)

            listen_button = gr.Button("Generate and Listen")
            audio_output = gr.Audio(label="Output Audio")
            listen_button.click(
                listen_to_model, 
                inputs=[
                    model_path_input, 
                    index_path_input, 
                    pitch_input, 
                    input_path_input, 
                    f0_method_input, 
                    save_as_input, 
                    index_rate_input, 
                    volume_normalization_input, 
                    consonant_protection_input
                ], 
                outputs=audio_output
            )

demo.launch()