Create README.md ## ByT5 Base Portuguese Product Reviews #### Model Description This is a finetuned version from ByT5 Base by Google for Sentimental Analysis from Product Reviews in Portuguese. ##### Paper: https://arxiv.org/abs/2105.13626 #### Training data It was trained from products reviews from a Americanas.com. You can found the data here: https://github.com/HeyLucasLeao/finetuning-byt5-model. #### Training Procedure It was finetuned using the Trainer Class available on the Hugging Face library. For evaluation it was used accuracy, precision, recall and f1 score. ##### Learning Rate: **1e-4** ##### Epochs: **1** ##### Colab for Finetuning: https://drive.google.com/file/d/17TcaN52moq7i7TE2EbcVbwQEQuAIQU63/view?usp=sharing ##### Colab for Metrics: https://colab.research.google.com/drive/1wbTDfOsE45UL8Q3ZD1_FTUmdVOKCcJFf#scrollTo=S4nuLkAFrlZ6 #### Score: ```python Training Set: 'accuracy': 0.9019706922688226, 'f1': 0.9305820610687022, 'precision': 0.9596555965559656, 'recall': 0.9032183375781431 Test Set: 'accuracy': 0.9019409684035312, 'f1': 0.9303758732034697, 'precision': 0.9006660401258529, 'recall': 0.9621126145787866 Validation Set: 'accuracy': 0.9044948078526491, 'f1': 0.9321924443009364, 'precision': 0.9024426549173129, 'recall': 0.9639705531617191 ``` #### Goals My true intention was totally educational, thus making available a this version of the model as a example for future proposes. How to use ``` python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(device) tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/byt5-base-pt-product-reviews") model = AutoModelForSeq2SeqLM.from_pretrained("HeyLucasLeao/byt5-base-pt-product-reviews") model.to(device) def classificar_review(review): inputs = tokenizer([review], padding='max_length', truncation=True, max_length=512, return_tensors='pt') input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) pred = np.argmax(output.cpu(), axis=1) dici = {0: 'Review Negativo', 1: 'Review Positivo'} return dici[pred.item()] classificar_review(review) ```